Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: C2 Maths Notes Edexcel
Description: C2 Maths notes for edexcel, very detailed and helpful
Description: C2 Maths notes for edexcel, very detailed and helpful
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
C2 notes
Algebraic and Functions
Factor Theorem
ο·
πβππ€ π‘βππ‘ π₯ β 1 ππ π ππππ‘ππ ππ 2π₯ 3 β 3π₯ 2 β π₯ + 2
o π ππππππππ π₯ β 1 π‘π ππππ π₯, π₯ = 1
o ππ’π π₯ πππ‘π π‘βπ πππ’ππ‘πππ [2(1)3 β 3(1)2 β 1 + 2]
o πΌπ πππ’ππ‘πππ πππ’πππ π‘π 0 π‘βππ π₯ β 1 ππ π ππππ‘ππ
o [2(1)3 β 3(1)2 β 1 + 2] = 0 β΄ π₯ β 1 ππ π ππππ‘ππ
Long Division
ο·
πΉπππ π‘βπ π πππ’π‘ππππ ππ 2π₯ 3 β 3π₯ 2 β π₯ + 2
o π₯ β 1 ππ π ππππ‘ππ β΄ πππ£πππ πππ’ππ‘πππ ππ¦ π₯ β 1
2π₯ 2 β π₯ β 2
o
o
o
π₯ β 1β2π₯ 3 β 3π₯ 2 β π₯ + 2
- 2π₯ 3 β 2π₯ 2
π₯2 β π₯
- π₯2 + π₯
β2π₯ + 2
- β2π₯ + 2
0
ο§ Divide the highest term in the equation (2π₯ 3 ) by the highest term in the
factor (π₯)
ο§ Multiply the answer (2π₯ 2 ) the factor
ο§ Subtract the answer from the 2 highest term in the equation ([2π₯ 3 β
3π₯ 2 ] β [2π₯ 3 β 2π₯ 2 ])
ο§ The highest terms should cancel out
ο§ Bring down the next term
ο§ Repeat steps from the start until you are left with a remainder or 0
3
2π₯ β 3π₯ 2 β π₯ + 2 dived by π₯ β 1 has 0 has a remainder so π₯ β 1 is one of the
solutions of the equation, the other 2 can be found by factorising the quadratic
equation got from long division (2π₯ 2 β π₯ β 2) )
Solutions are
ο§
1+β17 1ββ17
, 4
4
βπΒ±βπ2 β4ππ
2π
If the equation has missing terms for example 3π₯ 4 β 2π₯ 2 + 4, simply
rewrite and put 0 for the co-efficient of the missing π₯ terms and use long
division to find solutions; so 3π₯ 4 β 2π₯ 2 + 4 = 3π₯ 4 β 0π₯ 3 + 2π₯ 2 + 0π₯ + 4
Exponentials
ο·
πππ π₯ β 1 β using the quadratic formula
Exponential functions : π¦ = π π₯
o
ο§
π₯ axis is the asymptote
Logarithms
ο·
log π πΆ
o
o
o
o
= π΅ βΊ ππ΅= πΆ
log π π = 1 βΊ π1 = π
log π 1 = 0 βΊ π0 = 1
log π π = log π π β π = π
If π < 1 then log π < 0
ο§ Multiplication Rule : log π π₯π¦ = log π π₯ + log π π¦
π₯
ο§ Division Rule : log π = log π π₯ β log π π¦
π¦
ο§
Power rule : log π π₯ π = πlog π π₯
ο§
Changing log bases : log π π =
ο·
Express the following in terms of log π₯ and log π¦
π₯2
o
ο·
π₯2 1
log β5π¦2 = log(5π¦2 )2
1
π₯2
β΄ log( 2 )
2
5π¦
1
β΄ (log π₯ 2 β log 5π¦ 2 )
2
1
β΄ [2 log π₯ β (log 5 + log π¦ 2 )]
2
1
β΄ [2 log π₯ β log 5 β 2 log π¦]
2
Simplify
log 81
log 27
o
β΄
log 34
log 33
β΄
4log 3
3log 3
β΄
ο·
log π π
log π π
4
3
Solve
o
52π₯β1 = 3 π₯+1
β΄ log 52π₯β1 = log 3 π₯+1
β΄ (2π₯ β 1) log 5 = (π₯ + 1) log 3
β΄ 2π₯ log 5 β log 5 = π₯ log 3 + log 3
β΄ 2π₯ log 5 β π₯ log 3 = log 3 + log 5
β΄ π₯(2 log 5 β log 3) = log 3 + log 5
log 3 + log 5
β΄ π₯=
= 1
...
3 (1 π
...
24 (2 π
...
o π₯ 2 + π¦ 2 + 10π₯ + 2π¦ + 13 = 0
β΄ π₯ 2 + 10π₯ + π¦ 2 + 2π¦ + 13 = 0
β΄ (π₯ + 5)2 β 25 + (π¦ + 1)2 β 1 + 13 = 0
β΄ (π₯ + 5)2 + (π¦ + 1)2 β 13 = 0
β΄ ππππ‘ππ ππ β 5, β1
β΄ πΊπππππππ‘ ππππ ππππ‘ππ π‘π π‘ππππππ‘ ππ
2 β β1
3
=
β3 β β5 2
β΄ πΊπππππππ‘ ππ π‘ππππππ‘ π€βππβ ππ ππππππππππ’πππ π‘π π‘βπ ππππ ππππ π‘βπ ππππ‘ππ π‘π
π‘βπ π‘ππππππ‘ ππ
2
β
3
2
β΄ π¦ β 2 = β (π₯ β β3)
3
2
β΄ π¦β2=β π₯β2
3
2
β΄ π¦=β π₯
3
Equation of a Circle Given Three Points on the Circumference
ο·
πΉπππ π‘βπ πππ’ππ‘πππ ππ π‘βπ ππππππ πππ π πππ π‘βπππ’πβ π‘βπ πππππ‘π (β1,5), (3,5) πππ (3, β1)
o
π·πππ€ π ππππππ πππ ππππ π‘βπ πππππ‘π ππ π‘βπ πππππ’ππππππππ
π·πππ€ π‘βπ πβππππ ππππ πππππ‘π π΄(β1,5) π‘π π΅(3,5)πππ π΅ π‘π πΆ(3, β1)
π·πππ€ ππππππππππ’πππ πππ πππ‘πππ ππ π‘βπ πβππππ π΄π΅ πππ π΅πΆ
πβπππ π‘βπ 2 ππππππππππ’πππ πππ πππ‘πππ ππ π‘βπ πβππππ ππππ‘ ππ π‘βπ ππππ‘ππ ππ π‘βπ ππππππ
πβπ ππππ‘ππ ππ βπππππ¦ π‘βπ ππππππππ‘ ππ π΄π΅ πππ π΅πΆ
β1 + 3
5 + β1
β΄ ππππ‘ππ = (
) πππ (
)
2
2
β΄ ππππ‘ππ = (1,2)
πΉπππ π‘βπ ππππ‘ππ π‘π πππ¦ ππ π‘βπ πππππ‘π ππ π‘βπ ππππππ ππ π‘βπ πππππ’π
β΄ ππ πππ ππ¦π‘βππππππ , π 2 = (3 β 1)2 + (5 β 2)2
β΄ π 2 = 13
πΈππ’ππ‘πππ ππ ππππππ ππ π 2 = (π₯ β π)2 + (π¦ β π)2 "π€βπππ π πππ π πππ π‘βπ ππππ‘ππ"
β΄ 13 = (π₯ β 1)2 + (π¦ β 2)2
Circle Theorems
ο·
Sequences and Series
Geometric Sequences
ο·
π π‘β = ππ πβ1
ο·
ππ =
π(π π β1)
πβ1
o
o
o
ο·
=
π(1βπ π )
1β π
π ππ π‘βπ ππππ π‘ π‘πππ
π ππ ππππππ πππ‘ππ
π ππ π‘βπ ππ’ππππ ππ π‘ππππ
πΆπππππ πππ‘ππ β
o
2 ππ π‘πππ
1 π π‘ π‘πππ
=
3 ππ π‘πππ
2 ππ π‘πππ
πΌπ 2π₯ + 5, 6π₯ β 10 πππ 8π₯ + 20 πππ ππππ πππ’π‘ππ£π π‘ππππ ππ π ππππππ‘πππ
π πππππ
...
5% πππ‘ππππ π‘ πππ π¦πππ
...
π΄ππ‘ππ βππ€ ππππ¦ π¦ππππ βππ βππ πππππ’ππ‘
ππππ’ππ’πππ‘ππ ππππ π‘βππ Β£20000?
π(π π β 1)
π(1 β π π )
ππ =
=
πβ1
1β π
(500 Γ 1
...
035 π β 1)
β΄ 20000 β₯
1
...
035)(1
...
035
β΄ 700 β₯ 517
...
035 π β 1)
β΄ 700 β₯ 517
...
035 π ) β 517
...
5 β₯ 517
...
035 π )
β΄ 2
...
035 π
log π πΆ = π΅ βΊ π π΅ = πΆ
β΄ log1
...
35265 = π
β΄ π = 24
...
5100 = 7
...
5101 = 3
...
π
β΄ πβ =
1β π
Binomial Expansion
Binomial Expansion Method[
ο·
π
πͺπ =
o
ο·
π
πͺ π ππ ( ππ)]
π!
( πβπ)! π!
π
π
πͺ π = ( π)
5!
(5β2)! 2!
=
5Γ4Γ3Γ2Γ1
(3Γ2Γ1)2Γ1
=
5Γ4
2Γ1
= 10
Expanding (π + π) π when π is a positive integer
o (π + π) π β‘ π πͺ0 π π π 0 + π πͺ1 π πβ1 π1 + π πͺ2 π πβ2 π 2 + π πͺ3 π πβ3 π3 + β― +
π
πͺ π π0 π π
ο§ Expand (3 + 2π₯)4
ο§ (3 + 2π₯)4 = 4 πΆ0 (3)4 (2π₯)0 + 4 πΆ1 (3)4β1 (2π₯)1 + 4 πΆ2 (3)4β2 (2π₯)2 +
4 (3)4β3 (2π₯)3
πΆ3
+ 4 πΆ4 (3)0 (2π₯)4
β΄ (3 + 2π₯)4 = 1 (3)4 (2π₯)0 + 4(3)3 (2π₯)1 + 6(3)2 (2π₯)2 + 4(3)1 (2π₯)3 +
1(3)0 (2π₯)4
β΄ (3 + 2π₯)4 = 1 (81)(1) + 4(27)(2π₯) + 6(9)(4π₯ 2 ) + 4(3)(8π₯ 3 ) +
1(1)(16π₯ 4 )
β΄ (3 + 2π₯)4 = 1 (81) + 4(54π₯) + 6(36π₯ 2 ) + 4(24π₯ 3 ) + 1(16π₯ 4 )
β΄ (3 + 2π₯)4 = 81 + 216π₯ + 216π₯ 2 + 96π₯ 3 + 16π₯ 4
ο· You can use Pascalβs Triangle to replace π πͺ π , use the (π + 1)π‘β row
ο§
ο§
ο§
ο§
Expand (2 β 3π₯)5 up to π₯ 3
(2 β 3π₯)5 = 5 πΆ0 (2)5 (β3π₯)0 + 5 πΆ1 (2)5β1 (β3π₯)1 + 5 πΆ2 (2)5β2 (β3π₯)2
+ 5 πΆ3 (2)5β3 (β3π₯)3
β΄ (2 β 3π₯)5 = 1(2)5 (β3π₯)0 + 5(2)4 (β3π₯)1 + 10(2)3 (β3π₯)2
+ 10(2)2 (β3π₯)3
β΄ (2 β 3π₯)5 = 1(32)(1) + 5(16)(β3π₯) + 10(8)(9π₯ 2 ) + 10(4)(β27π₯ 3 )
β΄ (2 β 3π₯)5 = 1(32) + 5(β48π₯) + 10(72π₯ 2 ) + 10(β108π₯ 3 )
β΄ (2 β 3π₯)5 = 32 β 240π₯ + 720π₯ 2 β 1080π₯ 3
Find the term in π₯ 5 in the expansion (5 β 2π₯)8
π
πͺ1 π πβ1 π1
β΄ 8 πΆ5 (5)8β5 (β2π₯)5
β΄ 56(5)3 (β2π₯)5
β΄ 56(125)(β32π₯ 5 )
β΄ 56(β4000π₯ 5 )
β΄ β224000π₯ 5
Binomial Expansion Formula
ο·
(1 + π) π β‘ 1 + ππ +
π(πβ1)
2!
o
(1 + π₯)4
o
(1 + π₯)4 = 1 + 4π₯ +
o
o
o
π2 +
π(πβ1)(πβ2)
3!
4(4β1)
2!
π3 + β―
4(4β1)(4β2)
4(4β1)(4β2)(4β3)
π₯2 +
π₯3 +
π₯4
3!
4!
4(3) 2
4(3)(2) 3
4(3)(2)(1) 4
β΄ (1 + π₯)4 = 1 + 4π₯ +
π₯ +
π₯ +
π₯
2Γ1
3Γ2Γ1
4Γ3Γ2Γ1
12 2 24 3 24 4
β΄ (1 + π₯)4 = 1 + 4π₯ +
π₯ +
π₯ +
π₯
2
6
24
4
2
3
4
β΄ (1 + π₯) = 1 + 4π₯ + 6π₯ + 4π₯ + π₯
(2 β 3π₯)3
3
3
(2 β 3π₯)3 = [2(1 β 2 π₯)]3 = 23 (1 β 2 π₯)3
3
3
3(3β1)
3
3(3β1)(3β2)
3
23 (1 β 2 π₯)3 = 23 [1 + 3(β 2)π₯ + 2! (β 2)π₯ 2 +
(β 2)π₯ 3 ]
3!
3
3
3(2)
3
3(2)(1)
3
β΄ 23 (1 β π₯)3 = 23 [1 + 3(β )π₯ +
(β )π₯ 2 +
(β )π₯ 3 ]
2
2
2Γ1
2
3Γ2Γ1 2
3 3
3
6 3 2 6
3
β΄ 23 (1 β π₯) = 23 [1 + 3(β )π₯ + (β π₯) + (β π₯)3 ]
2
2
2 2
6
2
3 3
3
6 9 2
6
27 3
3
3
β΄ 2 (1 β π₯) = 2 [1 + 3(β )π₯ + ( π₯ ) + (β
π₯ )]
2
2
2 4
6
8
3
9
27 2 27 3
β΄ 23 (1 β π₯)3 = 23 [1 β π₯ +
π₯ β
π₯ ]
2
2
4
8
3
9
27 2 27 3
β΄ 23 (1 β π₯)3 = 8[1 β π₯ +
π₯ β
π₯ ]
2
2
4
8
β΄ (2 β 3π₯)3 = 8 β 36π₯ + 54π₯ 2 β 27π₯ 3
Trigonometry
Trigonometry Ratios
Trigonometry Graphs
Transformation of Trigonometry Graphs
ο·
ο·
ο·
ο·
π¦ = ππ(π₯) β Stretch parallel to the π¦ β ππ₯ππ
π¦ = π(ππ₯) β Stretch parallel to the π₯ β ππ₯ππ
π¦ = βπ(π₯) β Reflection in the π₯ β ππ₯ππ
π¦ = π(βπ₯) β Reflection in the π¦ β ππ₯ππ
ο·
ο·
π¦ = π(π₯ + π) β Translation parallel π₯ β ππ₯ππ by βπ units
π¦ = π(π₯) + π β Translation parallel π¦ β ππ₯ππ by π units
Applications of Trigonometry functions
Area of a Triangle
ο·
1
π΄πππ = 2 ππ sin πΆ
Find Length of a side or size of an angle
Sine Rule
ο·
sin π΄
π
=
sin π΅
π
=
sin πΆ
π
Cosine Rule
ο·
π2 = π 2 + π 2 β 2ππ cos π΄ ππ cos π΄ =
π2 +π 2βπ2
2ππ
Radians
ο·
ο·
ο·
A radian (1 π ) is the angle subtended at the centre of the circle of the length r and arc r, r is
the radius
ππ’ππππ ππ π ππππππ ππ πππ π‘π’ππ (360Β°) =
π·ππππππ πππ ππππππ ππ
360Β°
2π
π
360Β° β‘ 2π
ο·
o
=
2ππ
π
= 2π β 6
...
6ππ2
ο§
ο§
o
π΄πππ =
πππππππ‘ππ = (
142
Γ
360
2π6) + (6 + 6) = 14
...
9ππ
πΉπππ π‘βπ ππππ ππ π‘βπ πππππ π ππππππ‘ (π βππππ πππππ€), πππ£πππ π¦ππ’π πππ π€ππ π‘π 1 ππ
ο§
ο§
π΄πππ ππ π πππ‘ππ =
ο§
o
π΄πππ ππ π πππ‘ππ β π΄πππ ππ π‘πππππππ = π΄πππ ππ π ππππππ‘
π΄πππ ππ π‘πππππππ
70
Γ π5
...
2ππ2
360
1
= 2 (5
...
3) sin 1
...
2ππ2
ο§ π΄πππ ππ π ππππππ‘ = 17
...
2 = 4
...
ο§
ο§
ο§
π΄πππ ππ πππππ π ππππππ‘ = π΄πππ ππ ππππππ β π΄πππ ππ πππππ π ππππππ‘
π΄πππ ππ ππππππ = π3
...
36ππ2
π΄πππ ππ πππππ π ππππππ‘ = π΄πππ ππ π πππ‘ππ β π΄πππ ππ π‘πππππππ
ο§
π΄πππ ππ π πππ‘ππ =
ο§
π΄πππ ππ π‘πππππππ
ο§
ο§
π΄πππ ππ πππππ π ππππππ‘ = 8
...
72ππ2 = 1
...
36ππ2 β 1
...
4ππ2
1
...
82 = 8
...
8 Γ 3
...
2 π
2
2
= 6
...
o πΉπππ π‘βπ πππππππππ‘ππ ππ π‘βπ π π‘ππ‘ππππππ¦ πππππ‘π ππ π‘βπ ππππβ π¦ = π₯ 3 + 3π₯ 2 β
9π₯ + 4
ππ¦
β΄
= 3π₯ 2 + 6π₯ β 9
ππ₯
ππ¦
ππ‘ π π‘ππ‘ππππππ¦ πππππ‘π
=0
ππ₯
β΄ 3π₯ 2 + 6π₯ β 9 = 0
β΄ π₯ = β3 ππ π₯ = 1
π π’π π₯ ππππ πππ‘π π‘βπ πππ’ππ‘πππ
β΄ π π‘ππ‘ππππππ¦ πππππ‘π πππ (β3,23) πππ (1, β9)
To know the nature of a stationary point (whether it is a minimum, maximum or a turning
point) you have to find
ππ¦
ππ₯
= 0 to get π₯ value of the stationary point and sub in Β± 1π₯ values
from the stationary point into the
π₯ values
ππ¦
ππ₯
= 0 ππ π β² (π₯) = 0 ππ ππππππππ‘ = 0; for
2
-ve
+ve
+ve
-ve
ππ¦
ππ₯
equation to determine the nature of the point
...
πΌπ π‘βπ πππππ‘β ππ π‘βπ πππ₯
ππ π‘π€πππ π‘βπ π€πππ‘β
...
when π‘ β β,
1
=0
π‘3
Area under a curve
ο·
When find the area bounded by a curve and the π₯-axis, use the integration formula to get
the area using the limits provided
...
Then subtract the
area below the line from the area below the curve
o πΉπππ π‘βπ ππππ πππ’ππππ ππ¦ π‘βπ ππ’ππ£π π¦ = π₯ 2 πππ π‘βπ ππππ π¦ = π₯
π₯2 = π₯
β΄ π₯2 β π₯ = 0
β΄ π₯(π₯ β 1) = 0
β΄ π₯ = 0 ππ π₯ = 1
β΄ πππππ‘π πππ 0 πππ 1
1
π΄πππ π’ππππ ππππ β« π₯ ππ₯
π₯2
β΄
2
12
02
1
β΄[ ]β[ ]=
2
2
2
0
1
π΄πππ π’ππππ ππ’ππ£π β« π₯ 2
0
π₯3
3
13
03
1
β΄[ ]β[ ]=
3
3
3
1 1 1
β΄ π΄πππ = β = π ππ’πππ π’πππ‘π
2 3 6
β΄
Trapezium Rule
ο·
The formula for the area of a trapezium is: π΄ =
π+π
β,
2
when trying to find the area under a
curve using the trapezium rule; π is β, π¦1 is π and π¦2 is π
ο·
π
π
2
πΉππππ’ππ πππ π‘πππππ§ππ’π ππ’ππ: β«π π(π₯) ππ₯ = [(π¦1 + π¦ π ) + 2(π¦2 + π¦3 + β― + π¦ πβ1 )]
o
7
ππ π π‘βπ π‘πππππ§ππ’π ππ’ππ π‘π ππππ π‘βπ ππππππ₯ππππ‘π π£πππ’π ππ β« βπ₯ β 1 ππ₯ π‘πππππ π π‘ππππ ππ
3
π€πππ‘β 1 π’πππ‘
π₯
π¦ = βπ₯ β 1
3
4
5
6
7
π¦1 = β2
π¦2 = β3
π¦3 = 2
π¦4 = β5
π¦5 = β6
7
1
β΄ β« βπ₯ β 1 ππ₯ = [(β2 + β6) + 2(β3 + 2 + β5)]
2
3
β΄ π΄πππππ₯ππππ‘ππ π΄πππ ππ 7
Title: C2 Maths Notes Edexcel
Description: C2 Maths notes for edexcel, very detailed and helpful
Description: C2 Maths notes for edexcel, very detailed and helpful