Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: C2 Maths Notes Edexcel
Description: C2 Maths notes for edexcel, very detailed and helpful

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


C2 notes
Algebraic and Functions
Factor Theorem
ο‚·

π‘†β„Žπ‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π‘₯ βˆ’ 1 𝑖𝑠 π‘Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘œπ‘“ 2π‘₯ 3 βˆ’ 3π‘₯ 2 βˆ’ π‘₯ + 2
o π‘…π‘’π‘Žπ‘Žπ‘Ÿπ‘Žπ‘›π‘”π‘’ π‘₯ βˆ’ 1 π‘‘π‘œ 𝑓𝑖𝑛𝑑 π‘₯, π‘₯ = 1
o 𝑆𝑒𝑏 π‘₯ π‘–π‘›π‘‘π‘œ π‘‘β„Žπ‘’ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› [2(1)3 βˆ’ 3(1)2 βˆ’ 1 + 2]
o 𝐼𝑓 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘’π‘žπ‘’π‘Žπ‘™π‘  π‘‘π‘œ 0 π‘‘β„Žπ‘’π‘› π‘₯ βˆ’ 1 𝑖𝑠 π‘Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
o [2(1)3 βˆ’ 3(1)2 βˆ’ 1 + 2] = 0 ∴ π‘₯ βˆ’ 1 𝑖𝑠 π‘Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ

Long Division
ο‚·

𝐹𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  π‘œπ‘“ 2π‘₯ 3 βˆ’ 3π‘₯ 2 βˆ’ π‘₯ + 2
o π‘₯ βˆ’ 1 𝑖𝑠 π‘Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ ∴ 𝑑𝑖𝑣𝑖𝑑𝑒 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 𝑏𝑦 π‘₯ βˆ’ 1
2π‘₯ 2 βˆ’ π‘₯ βˆ’ 2
o

o

o

π‘₯ βˆ’ 1βƒ’2π‘₯ 3 βˆ’ 3π‘₯ 2 βˆ’ π‘₯ + 2
- 2π‘₯ 3 βˆ’ 2π‘₯ 2
π‘₯2 βˆ’ π‘₯
- π‘₯2 + π‘₯
βˆ’2π‘₯ + 2
- βˆ’2π‘₯ + 2
0
ο‚§ Divide the highest term in the equation (2π‘₯ 3 ) by the highest term in the
factor (π‘₯)
ο‚§ Multiply the answer (2π‘₯ 2 ) the factor
ο‚§ Subtract the answer from the 2 highest term in the equation ([2π‘₯ 3 βˆ’
3π‘₯ 2 ] βˆ’ [2π‘₯ 3 βˆ’ 2π‘₯ 2 ])
ο‚§ The highest terms should cancel out
ο‚§ Bring down the next term
ο‚§ Repeat steps from the start until you are left with a remainder or 0
3
2π‘₯ βˆ’ 3π‘₯ 2 βˆ’ π‘₯ + 2 dived by π‘₯ βˆ’ 1 has 0 has a remainder so π‘₯ βˆ’ 1 is one of the
solutions of the equation, the other 2 can be found by factorising the quadratic
equation got from long division (2π‘₯ 2 βˆ’ π‘₯ βˆ’ 2) )
Solutions are
ο‚§

1+√17 1βˆ’βˆš17
, 4
4

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘
2π‘Ž

If the equation has missing terms for example 3π‘₯ 4 βˆ’ 2π‘₯ 2 + 4, simply
rewrite and put 0 for the co-efficient of the missing π‘₯ terms and use long
division to find solutions; so 3π‘₯ 4 βˆ’ 2π‘₯ 2 + 4 = 3π‘₯ 4 βˆ’ 0π‘₯ 3 + 2π‘₯ 2 + 0π‘₯ + 4

Exponentials
ο‚·

π‘Žπ‘›π‘‘ π‘₯ βˆ’ 1 – using the quadratic formula

Exponential functions : 𝑦 = π‘Ž π‘₯

o

ο‚§

π‘₯ axis is the asymptote

Logarithms
ο‚·

log π‘Ž 𝐢
o
o
o
o

= 𝐡 ⟺ π‘Žπ΅= 𝐢
log π‘Ž π‘Ž = 1 ⟺ π‘Ž1 = π‘Ž
log π‘Ž 1 = 0 ⟺ π‘Ž0 = 1
log π‘Ž 𝑁 = log π‘Ž 𝑀 β‡’ 𝑁 = 𝑀
If 𝑁 < 1 then log 𝑁 < 0
ο‚§ Multiplication Rule : log π‘Ž π‘₯𝑦 = log π‘Ž π‘₯ + log π‘Ž 𝑦
π‘₯
ο‚§ Division Rule : log π‘Ž = log π‘Ž π‘₯ βˆ’ log π‘Ž 𝑦
𝑦

ο‚§

Power rule : log π‘Ž π‘₯ 𝑛 = 𝑛log π‘Ž π‘₯

ο‚§

Changing log bases : log π‘Ž 𝑏 =
ο‚·

Express the following in terms of log π‘₯ and log 𝑦
π‘₯2

o

ο‚·

π‘₯2 1

log √5𝑦2 = log(5𝑦2 )2
1
π‘₯2
∴ log( 2 )
2
5𝑦
1
∴ (log π‘₯ 2 βˆ’ log 5𝑦 2 )
2
1
∴ [2 log π‘₯ βˆ’ (log 5 + log 𝑦 2 )]
2
1
∴ [2 log π‘₯ βˆ’ log 5 βˆ’ 2 log 𝑦]
2

Simplify
log 81
log 27

o
∴

log 34
log 33

∴

4log 3
3log 3

∴
ο‚·

log 𝑐 𝑏
log 𝑐 π‘Ž

4
3

Solve
o

52π‘₯βˆ’1 = 3 π‘₯+1
∴ log 52π‘₯βˆ’1 = log 3 π‘₯+1
∴ (2π‘₯ βˆ’ 1) log 5 = (π‘₯ + 1) log 3

∴ 2π‘₯ log 5 βˆ’ log 5 = π‘₯ log 3 + log 3
∴ 2π‘₯ log 5 βˆ’ π‘₯ log 3 = log 3 + log 5
∴ π‘₯(2 log 5 βˆ’ log 3) = log 3 + log 5
log 3 + log 5
∴ π‘₯=
= 1
...
3 (1 𝑑
...
24 (2 𝑑
...

o π‘₯ 2 + 𝑦 2 + 10π‘₯ + 2𝑦 + 13 = 0
∴ π‘₯ 2 + 10π‘₯ + 𝑦 2 + 2𝑦 + 13 = 0
∴ (π‘₯ + 5)2 βˆ’ 25 + (𝑦 + 1)2 βˆ’ 1 + 13 = 0
∴ (π‘₯ + 5)2 + (𝑦 + 1)2 βˆ’ 13 = 0
∴ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ 𝑖𝑠 βˆ’ 5, βˆ’1
∴ πΊπ‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘›π‘‘π‘Ÿπ‘’ π‘‘π‘œ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
2 βˆ’ βˆ’1
3
=
βˆ’3 βˆ’ βˆ’5 2
∴ πΊπ‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ π‘œπ‘“ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ π‘€β„Žπ‘–π‘β„Ž 𝑖𝑠 π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘‘π‘œ π‘‘β„Žπ‘’ 𝑙𝑖𝑛𝑒 π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ π‘‘π‘œ
π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
2
βˆ’
3
2
∴ 𝑦 βˆ’ 2 = βˆ’ (π‘₯ βˆ’ βˆ’3)
3
2
∴ π‘¦βˆ’2=βˆ’ π‘₯βˆ’2
3
2
∴ 𝑦=βˆ’ π‘₯
3

Equation of a Circle Given Three Points on the Circumference
ο‚·

𝐹𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘π‘Žπ‘ π‘ π‘–π‘›π‘” π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž π‘‘β„Žπ‘’ π‘π‘œπ‘–π‘›π‘‘π‘  (βˆ’1,5), (3,5) π‘Žπ‘›π‘‘ (3, βˆ’1)

o

π·π‘Ÿπ‘Žπ‘€ π‘Ž π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘Žπ‘›π‘‘ π‘šπ‘Žπ‘Ÿπ‘˜ π‘‘β„Žπ‘’ π‘π‘œπ‘–π‘›π‘‘π‘  π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’
π·π‘Ÿπ‘Žπ‘€ π‘‘β„Žπ‘’ π‘β„Žπ‘œπ‘Ÿπ‘‘π‘  π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘–π‘›π‘‘π‘  𝐴(βˆ’1,5) π‘‘π‘œ 𝐡(3,5)π‘Žπ‘›π‘‘ 𝐡 π‘‘π‘œ 𝐢(3, βˆ’1)
π·π‘Ÿπ‘Žπ‘€ π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘π‘–π‘ π‘’π‘π‘‘π‘œπ‘Ÿπ‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘β„Žπ‘œπ‘Ÿπ‘‘π‘  𝐴𝐡 π‘Žπ‘›π‘‘ 𝐡𝐢
π‘Šβ„Žπ‘’π‘Ÿπ‘’ π‘‘β„Žπ‘’ 2 π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘π‘–π‘ π‘’π‘π‘‘π‘œπ‘Ÿπ‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘β„Žπ‘œπ‘Ÿπ‘‘π‘  π‘šπ‘’π‘’π‘‘ 𝑖𝑠 π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’
π‘‡β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ 𝑖𝑠 β„Žπ‘’π‘Ÿπ‘’π‘π‘¦ π‘‘β„Žπ‘’ π‘šπ‘–π‘‘π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ 𝐴𝐡 π‘Žπ‘›π‘‘ 𝐡𝐢
βˆ’1 + 3
5 + βˆ’1
∴ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ = (
) π‘Žπ‘›π‘‘ (
)
2
2
∴ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ = (1,2)

πΉπ‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ π‘‘π‘œ π‘Žπ‘›π‘¦ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘–π‘›π‘‘π‘  π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’ 𝑖𝑠 π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ 
∴ π‘ˆπ‘ π‘–π‘›π‘” π‘ƒπ‘¦π‘‘β„Žπ‘Žπ‘”π‘œπ‘Ÿπ‘Žπ‘ , π‘Ÿ 2 = (3 βˆ’ 1)2 + (5 βˆ’ 2)2
∴ π‘Ÿ 2 = 13
πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’ 𝑖𝑠 π‘Ÿ 2 = (π‘₯ βˆ’ π‘Ž)2 + (𝑦 βˆ’ 𝑏)2 "π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž π‘Žπ‘›π‘‘ 𝑏 π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘’"
∴ 13 = (π‘₯ βˆ’ 1)2 + (𝑦 βˆ’ 2)2

Circle Theorems

ο‚·

Sequences and Series
Geometric Sequences
ο‚·

𝑛 π‘‘β„Ž = π‘Žπ‘Ÿ π‘›βˆ’1

ο‚·

𝑆𝑛 =

π‘Ž(π‘Ÿ 𝑛 βˆ’1)
π‘Ÿβˆ’1

o
o
o
ο‚·

=

π‘Ž(1βˆ’π‘Ÿ 𝑛 )
1βˆ’ π‘Ÿ

π‘Ž 𝑖𝑠 π‘‘β„Žπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘Ÿπ‘š
π‘Ÿ 𝑖𝑠 π‘π‘œπ‘šπ‘šπ‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œ
𝑛 𝑖𝑠 π‘‘β„Žπ‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘šπ‘ 

πΆπ‘œπ‘šπ‘šπ‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œ β‡’
o

2 𝑛𝑑 π‘‘π‘’π‘Ÿπ‘š
1 𝑠𝑑 π‘‘π‘’π‘Ÿπ‘š

=

3 π‘Ÿπ‘‘ π‘‘π‘’π‘Ÿπ‘š
2 𝑛𝑑 π‘‘π‘’π‘Ÿπ‘š

𝐼𝑓 2π‘₯ + 5, 6π‘₯ βˆ’ 10 π‘Žπ‘›π‘‘ 8π‘₯ + 20 π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘ π‘’π‘π‘’π‘‘π‘–π‘£π‘’ π‘‘π‘’π‘Ÿπ‘šπ‘  𝑖𝑛 π‘Ž π‘”π‘’π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘
π‘ π‘’π‘Ÿπ‘–π‘’π‘ 
...
5% π‘–π‘›π‘‘π‘’π‘Ÿπ‘’π‘ π‘‘ π‘π‘’π‘Ÿ π‘¦π‘’π‘Žπ‘Ÿ
...
π΄π‘“π‘‘π‘’π‘Ÿ β„Žπ‘œπ‘€ π‘šπ‘Žπ‘›π‘¦ π‘¦π‘’π‘Žπ‘Ÿπ‘  β„Žπ‘Žπ‘  β„Žπ‘–π‘  π‘Žπ‘π‘π‘œπ‘’π‘›π‘‘
π‘Žπ‘π‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘’π‘‘ π‘šπ‘œπ‘Ÿπ‘’ π‘‘β„Žπ‘Žπ‘› Β£20000?
π‘Ž(π‘Ÿ 𝑛 βˆ’ 1)
π‘Ž(1 βˆ’ π‘Ÿ 𝑛 )
𝑆𝑛 =
=
π‘Ÿβˆ’1
1βˆ’ π‘Ÿ
(500 Γ— 1
...
035 𝑛 βˆ’ 1)
∴ 20000 β‰₯
1
...
035)(1
...
035
∴ 700 β‰₯ 517
...
035 𝑛 βˆ’ 1)
∴ 700 β‰₯ 517
...
035 𝑛 ) βˆ’ 517
...
5 β‰₯ 517
...
035 𝑛 )
∴ 2
...
035 𝑛
log π‘Ž 𝐢 = 𝐡 ⟺ π‘Ž 𝐡 = 𝐢
∴ log1
...
35265 = 𝑛
∴ 𝑛 = 24
...
5100 = 7
...
5101 = 3
...

π‘Ž
∴ π‘†βˆž =
1βˆ’ π‘Ÿ

Binomial Expansion
Binomial Expansion Method[
ο‚·

𝒏

π‘ͺ𝒓 =
o

ο‚·

𝒏

π‘ͺ 𝒓 𝒐𝒓 ( 𝒓𝒏)]

𝑛!

( π‘›βˆ’π‘Ÿ)! π‘Ÿ!
πŸ“

πŸ“

π‘ͺ 𝟐 = ( 𝟐)

5!

(5βˆ’2)! 2!

=

5Γ—4Γ—3Γ—2Γ—1
(3Γ—2Γ—1)2Γ—1

=

5Γ—4
2Γ—1

= 10

Expanding (π‘Ž + 𝑏) 𝑛 when 𝑛 is a positive integer
o (π‘Ž + 𝑏) 𝑛 ≑ 𝒏 π‘ͺ0 π‘Ž 𝑛 𝑏 0 + 𝒏 π‘ͺ1 π‘Ž π‘›βˆ’1 𝑏1 + 𝒏 π‘ͺ2 π‘Ž π‘›βˆ’2 𝑏 2 + 𝒏 π‘ͺ3 π‘Ž π‘›βˆ’3 𝑏3 + β‹― +
𝒏
π‘ͺ 𝑛 π‘Ž0 𝑏 𝑛
ο‚§ Expand (3 + 2π‘₯)4
ο‚§ (3 + 2π‘₯)4 = 4 𝐢0 (3)4 (2π‘₯)0 + 4 𝐢1 (3)4βˆ’1 (2π‘₯)1 + 4 𝐢2 (3)4βˆ’2 (2π‘₯)2 +
4 (3)4βˆ’3 (2π‘₯)3
𝐢3
+ 4 𝐢4 (3)0 (2π‘₯)4
∴ (3 + 2π‘₯)4 = 1 (3)4 (2π‘₯)0 + 4(3)3 (2π‘₯)1 + 6(3)2 (2π‘₯)2 + 4(3)1 (2π‘₯)3 +
1(3)0 (2π‘₯)4
∴ (3 + 2π‘₯)4 = 1 (81)(1) + 4(27)(2π‘₯) + 6(9)(4π‘₯ 2 ) + 4(3)(8π‘₯ 3 ) +
1(1)(16π‘₯ 4 )
∴ (3 + 2π‘₯)4 = 1 (81) + 4(54π‘₯) + 6(36π‘₯ 2 ) + 4(24π‘₯ 3 ) + 1(16π‘₯ 4 )
∴ (3 + 2π‘₯)4 = 81 + 216π‘₯ + 216π‘₯ 2 + 96π‘₯ 3 + 16π‘₯ 4
ο‚· You can use Pascal’s Triangle to replace 𝒏 π‘ͺ 𝒓 , use the (𝑛 + 1)π‘‘β„Ž row

ο‚§
ο‚§

ο‚§
ο‚§

Expand (2 βˆ’ 3π‘₯)5 up to π‘₯ 3
(2 βˆ’ 3π‘₯)5 = 5 𝐢0 (2)5 (βˆ’3π‘₯)0 + 5 𝐢1 (2)5βˆ’1 (βˆ’3π‘₯)1 + 5 𝐢2 (2)5βˆ’2 (βˆ’3π‘₯)2
+ 5 𝐢3 (2)5βˆ’3 (βˆ’3π‘₯)3
∴ (2 βˆ’ 3π‘₯)5 = 1(2)5 (βˆ’3π‘₯)0 + 5(2)4 (βˆ’3π‘₯)1 + 10(2)3 (βˆ’3π‘₯)2
+ 10(2)2 (βˆ’3π‘₯)3
∴ (2 βˆ’ 3π‘₯)5 = 1(32)(1) + 5(16)(βˆ’3π‘₯) + 10(8)(9π‘₯ 2 ) + 10(4)(βˆ’27π‘₯ 3 )
∴ (2 βˆ’ 3π‘₯)5 = 1(32) + 5(βˆ’48π‘₯) + 10(72π‘₯ 2 ) + 10(βˆ’108π‘₯ 3 )
∴ (2 βˆ’ 3π‘₯)5 = 32 βˆ’ 240π‘₯ + 720π‘₯ 2 βˆ’ 1080π‘₯ 3
Find the term in π‘₯ 5 in the expansion (5 βˆ’ 2π‘₯)8
𝒏
π‘ͺ1 π‘Ž π‘›βˆ’1 𝑏1
∴ 8 𝐢5 (5)8βˆ’5 (βˆ’2π‘₯)5
∴ 56(5)3 (βˆ’2π‘₯)5
∴ 56(125)(βˆ’32π‘₯ 5 )
∴ 56(βˆ’4000π‘₯ 5 )
∴ βˆ’224000π‘₯ 5

Binomial Expansion Formula
ο‚·

(1 + π‘Ž) 𝑛 ≑ 1 + π‘›π‘Ž +

𝑛(π‘›βˆ’1)
2!

o

(1 + π‘₯)4

o

(1 + π‘₯)4 = 1 + 4π‘₯ +

o
o
o

π‘Ž2 +

𝑛(π‘›βˆ’1)(π‘›βˆ’2)
3!

4(4βˆ’1)
2!

π‘Ž3 + β‹―

4(4βˆ’1)(4βˆ’2)

4(4βˆ’1)(4βˆ’2)(4βˆ’3)

π‘₯2 +
π‘₯3 +
π‘₯4
3!
4!
4(3) 2
4(3)(2) 3
4(3)(2)(1) 4
∴ (1 + π‘₯)4 = 1 + 4π‘₯ +
π‘₯ +
π‘₯ +
π‘₯
2Γ—1
3Γ—2Γ—1
4Γ—3Γ—2Γ—1
12 2 24 3 24 4
∴ (1 + π‘₯)4 = 1 + 4π‘₯ +
π‘₯ +
π‘₯ +
π‘₯
2
6
24
4
2
3
4
∴ (1 + π‘₯) = 1 + 4π‘₯ + 6π‘₯ + 4π‘₯ + π‘₯
(2 βˆ’ 3π‘₯)3
3
3
(2 βˆ’ 3π‘₯)3 = [2(1 βˆ’ 2 π‘₯)]3 = 23 (1 βˆ’ 2 π‘₯)3
3

3

3(3βˆ’1)

3

3(3βˆ’1)(3βˆ’2)

3

23 (1 βˆ’ 2 π‘₯)3 = 23 [1 + 3(βˆ’ 2)π‘₯ + 2! (βˆ’ 2)π‘₯ 2 +
(βˆ’ 2)π‘₯ 3 ]
3!
3
3
3(2)
3
3(2)(1)
3
∴ 23 (1 βˆ’ π‘₯)3 = 23 [1 + 3(βˆ’ )π‘₯ +
(βˆ’ )π‘₯ 2 +
(βˆ’ )π‘₯ 3 ]
2
2
2Γ—1
2
3Γ—2Γ—1 2
3 3
3
6 3 2 6
3
∴ 23 (1 βˆ’ π‘₯) = 23 [1 + 3(βˆ’ )π‘₯ + (βˆ’ π‘₯) + (βˆ’ π‘₯)3 ]
2
2
2 2
6
2
3 3
3
6 9 2
6
27 3
3
3
∴ 2 (1 βˆ’ π‘₯) = 2 [1 + 3(βˆ’ )π‘₯ + ( π‘₯ ) + (βˆ’
π‘₯ )]
2
2
2 4
6
8
3
9
27 2 27 3
∴ 23 (1 βˆ’ π‘₯)3 = 23 [1 βˆ’ π‘₯ +
π‘₯ βˆ’
π‘₯ ]
2
2
4
8
3
9
27 2 27 3
∴ 23 (1 βˆ’ π‘₯)3 = 8[1 βˆ’ π‘₯ +
π‘₯ βˆ’
π‘₯ ]
2
2
4
8
∴ (2 βˆ’ 3π‘₯)3 = 8 βˆ’ 36π‘₯ + 54π‘₯ 2 βˆ’ 27π‘₯ 3

Trigonometry
Trigonometry Ratios

Trigonometry Graphs

Transformation of Trigonometry Graphs
ο‚·
ο‚·
ο‚·
ο‚·

𝑦 = π‘˜π‘“(π‘₯) β†’ Stretch parallel to the 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠
𝑦 = 𝑓(π‘˜π‘₯) β†’ Stretch parallel to the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠
𝑦 = βˆ’π‘“(π‘₯) β†’ Reflection in the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠
𝑦 = 𝑓(βˆ’π‘₯) β†’ Reflection in the 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠

ο‚·
ο‚·

𝑦 = 𝑓(π‘₯ + π‘Ž) β†’ Translation parallel π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 by βˆ’π‘Ž units
𝑦 = 𝑓(π‘₯) + π‘Ž β†’ Translation parallel 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠 by π‘Ž units

Applications of Trigonometry functions
Area of a Triangle

ο‚·

1

π΄π‘Ÿπ‘’π‘Ž = 2 π‘Žπ‘ sin 𝐢

Find Length of a side or size of an angle
Sine Rule

ο‚·

sin 𝐴
π‘Ž

=

sin 𝐡
𝑏

=

sin 𝐢
𝑐

Cosine Rule

ο‚·

π‘Ž2 = 𝑏 2 + 𝑐 2 βˆ’ 2𝑏𝑐 cos 𝐴 π‘œπ‘Ÿ cos 𝐴 =

𝑏2 +𝑐 2βˆ’π‘Ž2
2𝑏𝑐

Radians
ο‚·

ο‚·
ο‚·

A radian (1 𝑐 ) is the angle subtended at the centre of the circle of the length r and arc r, r is
the radius

π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘…π‘Žπ‘‘π‘–π‘Žπ‘›π‘  𝑖𝑛 π‘œπ‘›π‘’ π‘‘π‘’π‘Ÿπ‘› (360Β°) =
π·π‘’π‘”π‘Ÿπ‘’π‘’π‘  π‘π‘’π‘Ÿ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› 𝑖𝑠

360Β°
2πœ‹
𝑐

360Β° ≑ 2πœ‹

ο‚·

o

=

2πœ‹π‘Ÿ
π‘Ÿ

= 2πœ‹ β‰ˆ 6
...
6π‘π‘š2

ο‚§
ο‚§
o

π΄π‘Ÿπ‘’π‘Ž =

π‘ƒπ‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ = (

142
Γ—
360

2πœ‹6) + (6 + 6) = 14
...
9π‘π‘š

𝐹𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘–π‘›π‘œπ‘Ÿ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘ (π‘ β„Žπ‘Žπ‘‘π‘’π‘‘ π‘π‘’π‘™π‘œπ‘€), 𝑔𝑖𝑣𝑖𝑛𝑔 π‘¦π‘œπ‘’π‘Ÿ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ π‘‘π‘œ 1 𝑑𝑝

ο‚§
ο‚§

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ =

ο‚§
o

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ βˆ’ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’ = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’

70
Γ— πœ‹5
...
2π‘π‘š2
360
1
= 2 (5
...
3) sin 1
...
2π‘π‘š2

ο‚§ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘ = 17
...
2 = 4
...


ο‚§
ο‚§
ο‚§

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘šπ‘Žπ‘—π‘œπ‘Ÿ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘ = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’ βˆ’ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘šπ‘–π‘›π‘œπ‘Ÿ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’ = πœ‹3
...
36π‘π‘š2
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘šπ‘–π‘›π‘œπ‘Ÿ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘ = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ βˆ’ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’

ο‚§

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ =

ο‚§

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’

ο‚§
ο‚§

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘šπ‘–π‘›π‘œπ‘Ÿ π‘ π‘’π‘”π‘šπ‘’π‘›π‘‘ = 8
...
72π‘π‘š2 = 1
...
36π‘π‘š2 βˆ’ 1
...
4π‘π‘š2

1
...
82 = 8
...
8 Γ— 3
...
2 𝑐
2
2

= 6
...

o 𝐹𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘π‘œπ‘–π‘›π‘‘π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘”π‘Ÿπ‘Žπ‘β„Ž 𝑦 = π‘₯ 3 + 3π‘₯ 2 βˆ’
9π‘₯ + 4
𝑑𝑦
∴
= 3π‘₯ 2 + 6π‘₯ βˆ’ 9
𝑑π‘₯
𝑑𝑦
π‘Žπ‘‘ π‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘π‘œπ‘–π‘›π‘‘π‘ 
=0
𝑑π‘₯
∴ 3π‘₯ 2 + 6π‘₯ βˆ’ 9 = 0
∴ π‘₯ = βˆ’3 π‘œπ‘Ÿ π‘₯ = 1
𝑠𝑒𝑏 π‘₯ π‘π‘Žπ‘π‘˜ π‘–π‘›π‘‘π‘œ π‘‘β„Žπ‘’ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›
∴ π‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘π‘œπ‘–π‘›π‘‘π‘  π‘Žπ‘Ÿπ‘’ (βˆ’3,23) π‘Žπ‘›π‘‘ (1, βˆ’9)
To know the nature of a stationary point (whether it is a minimum, maximum or a turning
point) you have to find

𝑑𝑦
𝑑π‘₯

= 0 to get π‘₯ value of the stationary point and sub in Β± 1π‘₯ values

from the stationary point into the
π‘₯ values
𝑑𝑦
𝑑π‘₯

= 0 π‘œπ‘Ÿ 𝑓 β€² (π‘₯) = 0 π‘œπ‘Ÿ π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ = 0; for

2
-ve
+ve
+ve
-ve

𝑑𝑦
𝑑π‘₯

equation to determine the nature of the point
...
𝐼𝑓 π‘‘β„Žπ‘’ π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘₯
𝑖𝑠 𝑑𝑀𝑖𝑐𝑒 π‘‘β„Žπ‘’ π‘€π‘–π‘‘π‘‘β„Ž
...
when 𝑑 β†’ ∞,

1
=0
𝑑3

Area under a curve

ο‚·

When find the area bounded by a curve and the π‘₯-axis, use the integration formula to get
the area using the limits provided
...
Then subtract the
area below the line from the area below the curve
o 𝐹𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘Žπ‘Ÿπ‘’π‘Ž π‘π‘œπ‘’π‘›π‘‘π‘’π‘‘ 𝑏𝑦 π‘‘β„Žπ‘’ π‘π‘’π‘Ÿπ‘£π‘’ 𝑦 = π‘₯ 2 π‘Žπ‘›π‘‘ π‘‘β„Žπ‘’ 𝑙𝑖𝑛𝑒 𝑦 = π‘₯
π‘₯2 = π‘₯
∴ π‘₯2 βˆ’ π‘₯ = 0
∴ π‘₯(π‘₯ βˆ’ 1) = 0
∴ π‘₯ = 0 π‘œπ‘Ÿ π‘₯ = 1
∴ π‘™π‘–π‘šπ‘–π‘‘π‘  π‘Žπ‘Ÿπ‘’ 0 π‘Žπ‘›π‘‘ 1
1

π΄π‘Ÿπ‘’π‘Ž π‘’π‘›π‘‘π‘’π‘Ÿ 𝑙𝑖𝑛𝑒 ∫ π‘₯ 𝑑π‘₯
π‘₯2
∴
2
12
02
1
∴[ ]βˆ’[ ]=
2
2
2

0

1

π΄π‘Ÿπ‘’π‘Ž π‘’π‘›π‘‘π‘’π‘Ÿ π‘π‘’π‘Ÿπ‘£π‘’ ∫ π‘₯ 2
0

π‘₯3
3
13
03
1
∴[ ]βˆ’[ ]=
3
3
3
1 1 1
∴ π΄π‘Ÿπ‘’π‘Ž = βˆ’ = π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ 𝑒𝑛𝑖𝑑𝑠
2 3 6
∴

Trapezium Rule

ο‚·

The formula for the area of a trapezium is: 𝐴 =

π‘Ž+𝑏
β„Ž,
2

when trying to find the area under a

curve using the trapezium rule; 𝑛 is β„Ž, 𝑦1 is π‘Ž and 𝑦2 is 𝑏

ο‚·

𝑏

𝑛
2

πΉπ‘œπ‘Ÿπ‘šπ‘’π‘™π‘Ž π‘“π‘œπ‘Ÿ π‘‘π‘Ÿπ‘Žπ‘π‘’π‘§π‘–π‘’π‘š π‘Ÿπ‘’π‘™π‘’: βˆ«π‘Ž 𝑓(π‘₯) 𝑑π‘₯ = [(𝑦1 + 𝑦 𝑛 ) + 2(𝑦2 + 𝑦3 + β‹― + 𝑦 π‘›βˆ’1 )]

o

7

π‘ˆπ‘ π‘’ π‘‘β„Žπ‘’ π‘‘π‘Ÿπ‘Žπ‘π‘’π‘§π‘–π‘’π‘š π‘Ÿπ‘’π‘™π‘’ π‘‘π‘œ 𝑓𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘Žπ‘π‘π‘Ÿπ‘œπ‘₯π‘–π‘šπ‘Žπ‘‘π‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ ∫ √π‘₯ βˆ’ 1 𝑑π‘₯ π‘‘π‘Žπ‘˜π‘–π‘›π‘” π‘ π‘‘π‘Ÿπ‘–π‘π‘  π‘œπ‘“
3
π‘€π‘–π‘‘π‘‘β„Ž 1 𝑒𝑛𝑖𝑑
π‘₯

𝑦 = √π‘₯ βˆ’ 1

3
4
5
6
7

𝑦1 = √2
𝑦2 = √3
𝑦3 = 2
𝑦4 = √5
𝑦5 = √6

7
1
∴ ∫ √π‘₯ βˆ’ 1 𝑑π‘₯ = [(√2 + √6) + 2(√3 + 2 + √5)]
2
3
∴ π΄π‘π‘π‘Ÿπ‘œπ‘₯π‘–π‘šπ‘Žπ‘‘π‘’π‘‘ π΄π‘Ÿπ‘’π‘Ž 𝑖𝑠 7
Title: C2 Maths Notes Edexcel
Description: C2 Maths notes for edexcel, very detailed and helpful