Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: linear differential equations class notes.
Description: This is very good linear differential equations class notes.best best of best notes.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


KIET GROUP OF INSTITUTIONS, DELHI NCR, GHAZIABAD
B
...
(II Sem
...

2๐œ‹

โˆž

โˆซ0 ๐‘“(cos ๐œƒ , sin ๐œƒ) ๐‘‘๐œƒ, โˆซโˆ’โˆž ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ

Course Outcome: Extend the concepts of complex functions for calculating Taylorโ€™s series, Laurentโ€™s series and
definite integrals

Application in Engineering: Complex analysis is a branch of mathematics that studies analytical properties of
functions of complex variables
...
The discipline covers a wide range of different techniques including
solution methods to free-boundary problems such as Hele-Shaw and Stokes flow, conformal mappings, Fourier and
other transform methods and Riemann-Hilbert problems
...
Importantly, there has been a surge of activity in the advancement of complex analysis methods
in recent years, driven by applications in engineering, biology, and medicine
...


1|Page

CONTENTS
Topic

Page No
...
Terminology used in complex integration
...
Complex integrals

3

3
...
Extension of Cauchyโ€™s integral theorem

7

5
...
Cauchyโ€™s integral formula for derivative of an analytic function

10

7
...
Taylor Series

15

9
...
Zero of an analytic function and singularity

17

11
...
The calculus of residues

19

13
...
Contour Integration

26

15
...
E-resources

33

2|Page

Terminology used in complex integration:
Continuous Arc: The set of points (๐‘ฅ, ๐‘ฆ) defined by ๐‘ฅ = โˆ…(๐‘ก), ๐‘ฆ = ๐œ“(๐‘ก), with parameter ๐‘ก in the interval (๐‘Ž, ๐‘) ,
define a continuous arc provided โˆ…(๐‘ก) & ๐œ“(๐‘ก) are continuous functions
...

Simple Curve: A curve having no self-intersections is known as simple curve
...
e
...


Closed Curve: A curve is said to be closed if end points are coinciding
...

Closed Contour: A piecewise smooth closed curve without points of self-intersection is called closed contour
...

Positive sense: of traversing a contour is the direction such that the interior domain bounded by the given closed
contour remains on the left of the direction of the motion
...


Example
...

Solution
...
Evaluate โˆณ๐ถ ๐‘ง ๐‘‘๐‘ง , where ๐ถ isโ€„the circle ๐‘ฅ = cos ๐‘ก , ๐‘ฆ = sin ๐‘ก , 0 โ‰ค ๐‘ก โ‰ค 2๐œ‹
...
Here, we have
๐‘ง(๐‘ก) = cos ๐‘ก + ๐‘– sin ๐‘ก = ๐‘’ ๐‘–๐‘ก
๐‘“(๐‘ง) =
1

๐‘งโ€ฒ(๐‘ก) = ๐‘–๐‘’ ๐‘–๐‘ก

1
= ๐‘’ โˆ’๐‘–๐‘ก
๐‘ง
2

2

Thus, โˆณ๐ถ ๐‘ง ๐‘‘๐‘ง = โˆซ0 ๐‘’ โˆ’๐‘–๐‘ก ๐‘–๐‘’ ๐‘–๐‘ก ๐‘‘๐‘ก = โˆซ0 ๐‘– ๐‘‘๐‘ก = ๐Ÿ๐…๐’Š
...


Example
...
We have โˆซ๐ถ(๐‘ฅ 2 + ๐‘–๐‘ฆ 2 )๐‘‘๐‘ง = โˆซ๐ถ (๐‘ฅ 2 + ๐‘–๐‘ฆ 2 )๐‘‘๐‘ง + โˆซ๐ถ (๐‘ฅ 2 + ๐‘–๐‘ฆ 2 )๐‘‘๐‘ง
1

2

on ๐ถ1 : ๐‘ฆ = ๐‘ฅ โ‡’ ๐‘‘๐‘ฆ = ๐‘‘๐‘ฅ and ๐‘ฅ โ†’ 0 ๐‘ก๐‘œ 1
1

Now, โˆซ๐ถ (๐‘ฅ 2 + ๐‘–๐‘ฆ 2 )๐‘‘๐‘ง = โˆซ0 (๐‘ฅ 2 + ๐‘–๐‘ฅ 2 )(1 + ๐‘–)๐‘‘๐‘ฅ
1

1

๐Ÿ

= (1 + ๐‘–)2 โˆซ0 ๐‘ฅ 2 ๐‘‘๐‘ฅ = ๐Ÿ‘ ๐’Š
on ๐ถ2 : ๐‘ฅ = 1 โ‡’ ๐‘‘๐‘ฅ = 0 and ๐‘ฆ โ†’ 1 ๐‘ก๐‘œ 2
2

โˆซ๐ถ (๐‘ฅ 2 + ๐‘–๐‘ฆ 2 )๐‘‘๐‘ง = โˆซ1 (1 + ๐‘–๐‘ฆ 2 )๐‘–๐‘‘๐‘ฆ
2

2

2

๐Ÿ•
๐Ÿ‘

= โˆ’ โˆซ1 ๐‘ฆ 2 ๐‘‘๐‘ฆ + ๐‘– โˆซ1 ๐‘‘๐‘ฆ = โˆ’ + ๐’Š
2

7

๐Ÿ•

๐Ÿ“

Finally, โˆซ๐ถ(๐‘ฅ 2 + ๐‘–๐‘ฆ 2 )๐‘‘๐‘ง = 3 ๐‘– + (โˆ’ 3 + ๐‘–) = โˆ’ ๐Ÿ‘ + ๐Ÿ‘ ๐’Š
...
Evaluate โˆซ0 (๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘–๐‘ฅ 2 ) ๐‘‘๐‘ง, along real axis from ๐‘ง = 0 ๐‘ก๐‘œ ๐‘ง = 1 and then along a line parallel to
imaginary axis from ๐‘ง = 1 ๐‘ก๐‘œ ๐‘ง = 1 + ๐‘–
...
Let ๐ผ = โˆซ0 (๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘–๐‘ฅ 2 ) ๐‘‘๐‘ง
= โˆซ๐ถ (๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘–๐‘ฅ 2 )๐‘‘๐‘ง + โˆซ๐ถ (๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘–๐‘ฅ 2 )๐‘‘๐‘ง
1

2

on ๐ถ1 : ๐‘ฆ = 0 โ‡’ ๐‘‘๐‘ฆ = 0 and ๐‘ฅ โ†’ 0 ๐‘ก๐‘œ 1
1

1

1

Now, โˆซ๐ถ (๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘–๐‘ฅ 2 )๐‘‘๐‘ง = โˆซ0 (๐‘ฅ โˆ’ ๐‘–๐‘ฅ 2 ) ๐‘‘๐‘ฅ = 2 โˆ’ 3 ๐‘–
1

on ๐ถ2 : ๐‘ฅ = 1 โ‡’ ๐‘‘๐‘ฅ = 0 and ๐‘ฆ โ†’ 0 ๐‘ก๐‘œ 1
1

1

โˆซ๐ถ (๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘–๐‘ฅ 2 )๐‘‘๐‘ง = โˆซ0 (1 โˆ’ ๐‘– โˆ’ ๐‘ฆ)๐‘–๐‘‘๐‘ฆ = 1 + 2 ๐‘–
2

1
2

1
3

1
2

3
2

1
6

โˆด ๐ผ = โˆ’ ๐‘– + 1 + ๐‘– = + ๐‘–
...
Evaluate โˆซ๐ถ (๐‘ง โˆ’ ๐‘ง 2 ) ๐‘‘๐‘ง, where ๐ถ is the upper half of the circle
...
What is the value of integral if
๐ถ is the lower half of the circle?

4|Page

Solution
...


Example
...

Solution
...
๐‘’ 2๐œ‹๐‘– + ๐‘’ 2๐œ‹๐‘– + 0 โˆ’ 1]
= โˆ’[โˆ’2๐œ‹๐‘– + 1 + 0 โˆ’ 1] = ๐Ÿ๐…๐’Š
...

๐œ•๐‘

By Greenโ€™s Theorem, โˆฎ๐ถ (๐‘€๐‘‘๐‘ฅ + ๐‘๐‘‘๐‘ฆ) = โˆฌ๐‘… ( ๐œ•๐‘ฅ โˆ’
๐œ•๐‘ฃ

๐œ•๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฃ

๐œ•๐‘€
) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ
๐œ•๐‘ฆ

โˆฎ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = โˆฌ๐‘… (โˆ’ ๐œ•๐‘ฅ โˆ’ ๐œ•๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ + ๐‘–โˆฌ๐‘… (๐œ•๐‘ฅ โˆ’ ๐œ•๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ
โˆฎ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = โˆฌ๐‘… (โˆ’ ๐œ•๐‘ฅ โˆ’ ๐œ•๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ + ๐‘–โˆฌ๐‘… (๐œ•๐‘ฅ โˆ’ ๐œ•๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ
๐œ•๐‘ข

๐œ•๐‘ข

๐œ•๐‘ข

๐œ•๐‘ข

= โˆฌ๐‘… (๐œ•๐‘ฆ โˆ’ ๐œ•๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ + ๐‘–โˆฌ๐‘… (๐œ•๐‘ฅ โˆ’ ๐œ•๐‘ฅ ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ
=0
Hence, โˆฎ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = 0
5|Page

Note: Cauchyโ€™s Integral theorem without assumption that ๐‘“ โ€ฒ (๐‘ง) is continuous is known as Cauchy-Goursat Theorem
...
e Cauchy-Goursat Theorem can be stated as:
If f is analytic at all points within and on a simple closed contour C,
Then, โˆฎ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = 0

C-R equations:

๐œ•๐‘ข
๐œ•๐‘ฅ

=

๐œ•๐‘ฃ
๐œ•๐‘ฆ

๐‘Ž๐‘›๐‘‘

๐œ•๐‘ข
๐œ•๐‘ฆ

=โˆ’

๐œ•๐‘ฃ
๐œ•๐‘ฅ

Example
...


Solution
...
= โˆซ๐ถ ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง + โˆซ๐ถ ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง + โˆซ๐ถ ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง
1

2

1+๐‘–

3

โˆ’1+๐‘–

โˆ’1โˆ’๐‘–

= โˆซโˆ’1โˆ’๐‘– ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง + โˆซ1+๐‘– ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง + โˆซโˆ’1+๐‘– ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง
1

= [๐‘’ ๐‘–(1+๐‘–) โˆ’ ๐‘’ ๐‘–(โˆ’1โˆ’๐‘–) + ๐‘’ ๐‘–(โˆ’1+๐‘–) โˆ’ ๐‘’ ๐‘–(1+๐‘–) + ๐‘’ ๐‘–(โˆ’1โˆ’๐‘–) โˆ’ ๐‘’ ๐‘–(โˆ’1+๐‘–) ]
๐‘–
1

= ๐‘– [๐‘’ โˆ’1+๐‘– โˆ’ ๐‘’ 1โˆ’๐‘– + ๐‘’ โˆ’1โˆ’๐‘– โˆ’ ๐‘’ โˆ’1+๐‘– + ๐‘’ 1โˆ’๐‘– โˆ’ ๐‘’ โˆ’1โˆ’๐‘– ]
= ๐ŸŽ = ๐‘น
...
Evaluate โˆณ๐ถ ๐‘’ ๐‘ง ๐‘‘๐‘ง , where C is shown in given figure
...

The function ๐‘’ ๐‘ง is entire and C is a simple closed contour
...

Hence, โˆณ๐ถ ๐‘’ ๐‘ง ๐‘‘๐‘ง = 0

๐‘‘๐‘ง

Example
...

1

Solution
...

Thus, โˆซ๐ถ

๐‘‘๐‘ง
๐‘ง2

= 0
...
If
a domain is not simply connected, then it is called multiply connected domain
...
a)
...
b)
...


6|Page

A region which is not simply connected is called a multiply connected region
...

A multiply connected region enclosed between two or more separate curves
...


Simply connected region

Doubly connected region

Triply connected region

Extension of Cauchyโ€™s integral theorem
Statement: If ๐‘“(๐‘ง) is analytic in the region ๐‘… between two simple closed curves ๐ถ1 and ๐ถ2 , then
โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง, when integral along each curve is taken in anti-clockwise direction
...
, ๐ถ๐‘› are simple closed curves with a
positive orientation such that ๐ถ1 , ๐ถ2 , โ€ฆ
...

If ๐‘“ is analytic on each contour and at each point interior
to ๐ถ but exterior to all the ๐ถ๐‘˜ , ๐‘˜ = 1,2,3, โ€ฆ โ€ฆ , ๐‘›
โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = โˆ‘๐‘›๐‘˜=1 โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง
๐‘˜

Cauchyโ€™s integral formula
Statement: If ๐‘“(๐‘ง) is analytic within and on a closed curve ๐ถ and ๐‘ง0 is any point within ๐ถ, then
1

๐‘“(๐‘ง)

๐‘“(๐‘ง)

0

0

๐‘“(๐‘ง0 ) = 2๐œ‹๐‘– โˆฎ๐ถ ๐‘งโˆ’๐‘ง ๐‘‘๐‘ง OR โˆฎ๐ถ ๐‘งโˆ’๐‘ง ๐‘‘๐‘ง = 2๐œ‹๐‘–
...
By Cauchyโ€™s theorem, we have
๐‘“(๐‘ง)

โˆฎ๐ถ ๐‘งโˆ’๐‘ง ๐‘‘๐‘ง + โˆฎ๐ฟ
0

1

๐‘“(๐‘ง)
๐‘‘๐‘ง
๐‘งโˆ’๐‘ง0

๐‘“(๐‘ง)

โˆฎ๐ถ ๐‘งโˆ’๐‘ง ๐‘‘๐‘ง = โˆ’ โˆฎ๐ถ

0

0

+ โˆฎ๐ถ

0

๐‘“(๐‘ง)
๐‘‘๐‘ง
๐‘งโˆ’๐‘ง0

+ โˆฎ๐ฟ

2

๐‘“(๐‘ง)
๐‘‘๐‘ง
๐‘งโˆ’๐‘ง0

=0

L

๐‘“(๐‘ง)
๐‘‘๐‘ง
๐‘งโˆ’๐‘ง0

Now,

z
L C

C

The equation of the circle ๐ถ0 is |๐‘ง โˆ’ ๐‘ง0 | = ๐‘Ÿ
Or ๐‘ง โˆ’ ๐‘ง0 = ๐‘Ÿ๐‘’ ๐‘–๐œƒ โ‡’ ๐‘‘๐‘ง = ๐‘Ÿ๐‘–๐‘’ ๐‘–๐œƒ ๐‘‘๐œƒ
0
๐‘“(๐‘ง)
๐‘“(๐‘ง0 + ๐‘Ÿ๐‘’ ๐‘–๐œƒ )
๐‘‘๐‘ง = โˆ’ โˆซ
๐‘Ÿ๐‘–๐‘’ ๐‘–๐œƒ ๐‘‘๐œƒ
๐‘–๐œƒ
๐‘ง
โˆ’
๐‘ง
๐‘Ÿ๐‘’
0
๐ถ
2๐œ‹

โˆดโˆฎ

2๐œ‹

= ๐‘– โˆซ0 ๐‘“(๐‘ง0 + ๐‘Ÿ๐‘’ ๐‘–๐œƒ ) ๐‘‘๐œƒ
2๐œ‹

= ๐‘– โˆซ0 ๐‘“(๐‘ง0 ) ๐‘‘๐œƒ

[as ๐‘Ÿ โ†’ 0]

= 2๐œ‹๐‘–
...
Evaluate โˆฎ๐ถ

๐‘ง 2 โˆ’4๐‘ง+4
๐‘‘๐‘ง
๐‘ง+๐‘–

where ๐ถ is the circle |๐‘ง| = 2
...
Let ๐‘“(๐‘ง) = ๐‘ง 2 โˆ’ 4๐‘ง + 4
which is analytic and ๐‘ง0 = โˆ’๐‘– is within ๐ถ
...
๐‘“(โˆ’๐‘–)
= 2๐œ‹๐‘–
...
[โˆ’1 + 4๐‘– + 4]
= 2๐œ‹๐‘–(3 + 4๐‘–) = 2๐œ‹(โˆ’4 + 3๐‘–)
8|Page

๐‘ง

Example
...

Solution
...
Thus
โˆฎ๐ถ

๐‘ง
(๐‘ง+3๐‘–)

(๐‘งโˆ’3๐‘–)

1

๐‘‘๐‘ง = 2๐œ‹๐‘–
...
2 = ๐œ‹๐‘–

๐‘ง

โˆด โˆฎ๐ถ ๐‘ง2 +9 ๐‘‘๐‘ง = ๐…๐’Š
...
Evaluate โˆฎ๐ถ ๐‘ง2 +2๐‘งโˆ’3 ๐‘‘๐‘ง where ๐ถ is the circle |๐‘ง โˆ’ 2| = 2
...
Here,
5๐‘ง+7

5๐‘ง+7

โˆฎ๐ถ ๐‘ง2 +2๐‘งโˆ’3 ๐‘‘๐‘ง = โˆฎ๐ถ (๐‘ง+3)(๐‘งโˆ’1) ๐‘‘๐‘ง
1

1

= 3โˆฎ๐ถ ๐‘งโˆ’1 ๐‘‘๐‘ง + 2โˆฎ๐ถ ๐‘ง+3 ๐‘‘๐‘ง
โˆต ๐‘ง = 1 is interior to ๐ถ and ๐‘ง = โˆ’3 is exterior to C
...


Example
...
Let ๐ผ = โˆฎ๐ถ

sin ๐œ‹๐‘ง 2 +cos ๐œ‹๐‘ง 2
๐‘‘๐‘ง
(๐‘งโˆ’1)(๐‘งโˆ’2)

where ๐ถ is the circle |๐‘ง| = 3
...
Then
sin ๐œ‹๐‘ง 2 +cos ๐œ‹๐‘ง 2
๐‘‘๐‘ง
(๐‘งโˆ’1)(๐‘งโˆ’2)
1

๐ผ = โˆฎ๐ถ

sin ๐œ‹๐‘ง 2 +cos ๐œ‹๐‘ง 2
๐‘‘๐‘ง
(๐‘งโˆ’1)(๐‘งโˆ’2)
2

+ โˆฎ๐ถ

Where, ๐ถ1 & ๐ถ2 are two circles of very small radii with centres at ๐‘ง = 1 & ๐‘ง = 2
respectively
...
[

๐‘‘๐‘ง + โˆฎ๐ถ

2

sin ๐œ‹๐‘ง 2 +cos ๐œ‹๐‘ง 2
]
๐‘งโˆ’2
๐‘ง=1

0โˆ’1

0+1
)
1

= 2๐œ‹๐‘– ( โˆ’1 ) + 2๐œ‹๐‘– (

[

sin ๐œ‹๐‘ง2 +cos ๐œ‹๐‘ง2
]
๐‘งโˆ’1

๐‘งโˆ’2

+ 2๐œ‹๐‘–
...
Use Cauchyโ€™s integral formula to evaluate โˆฎ๐ถ (๐‘งโˆ’1)(๐‘งโˆ’2) ๐‘‘๐‘ง where ๐ถ is the circle |๐‘ง| = 3
...
Let ๐ผ = โˆฎ๐ถ (๐‘งโˆ’1)(๐‘งโˆ’2) ๐‘‘๐‘ง
Here, ๐‘ง = 1 ๐‘Ž๐‘›๐‘‘ ๐‘ง = 2 are two points within ๐ถ, at which the integrand is not analytic
...

๐‘’2๐‘ง

๐ผ = โˆฎ๐ถ

1

[๐‘งโˆ’2]
๐‘งโˆ’1

๐‘’2๐‘ง

๐‘‘๐‘ง + โˆฎ๐ถ

[๐‘งโˆ’1]
๐‘งโˆ’2

2

๐‘’2

๐‘’4

โˆ’1

1

๐‘’ 2๐‘ง

๐‘’ 2๐‘ง

๐‘‘๐‘ง = 2๐œ‹๐‘–
...
[๐‘งโˆ’1]

๐‘ง=2

= 2๐œ‹๐‘– ( ) + 2๐œ‹๐‘– ( ) = ๐Ÿ๐…๐’Š๐’†๐Ÿ (๐’†๐Ÿ โˆ’ ๐Ÿ)

Cauchyโ€™s integral formula for the derivative of an analytic function

Statement: If a function ๐‘“(๐‘ง) is analytic in the region ๐ท,then its derivative at any point ๐‘ง = ๐‘ง0 of ๐ท is also analytic in
๐ท and is given by
1

๐‘“(๐‘ง)
2 ๐‘‘๐‘ง
0)

๐‘“ โ€ฒ (๐‘ง0 ) = 2๐œ‹๐‘– โˆฎ๐ถ (๐‘งโˆ’๐‘ง

๐‘“(๐‘ง)
2 ๐‘‘๐‘ง
0)

OR โˆฎ๐ถ (๐‘งโˆ’๐‘ง

= 2๐œ‹๐‘–
...

Proof
...

Thus, the derivative of an analytic function is analytic
...
๐‘“ ๐‘› (๐‘ง0 )

Where, ๐ถ is any closed contour in ๐ท surrounding the point ๐‘ง = ๐‘ง0
...
We shall prove this theorem by Mathematical Induction
...
โˆ’1] ๐‘“(๐‘ง)๐‘‘๐‘ง

+ โ‹ฏ โ€ฆ
...
] ๐‘“(๐‘ง)๐‘‘๐‘ง

Taking ๐‘™๐‘–๐‘š๐‘–๐‘ก as โ„Ž โ†’ 0
lim

๐‘“๐‘˜ (๐‘ง0 +โ„Ž)โˆ’๐‘“๐‘˜ (๐‘ง0 )
โ„Ž
โ„Žโ†’0

=

๐‘“๐‘˜ (๐‘ง0 +โ„Ž)โˆ’๐‘“๐‘˜ (๐‘ง0 )
โ„Ž
โ„Žโ†’0

=

lim

โ‡’ ๐‘“ ๐‘˜+1 (๐‘ง0 ) =

(๐‘˜+1) !
2๐œ‹๐‘–

(๐‘˜+1) !
2๐œ‹๐‘–
(๐‘˜+1) !
2๐œ‹๐‘–

1

โˆฎ๐ถ (๐‘งโˆ’๐‘ง

0)

๐‘˜+2

๐‘“(๐‘ง)๐‘‘๐‘ง

๐‘˜+2

๐‘“(๐‘ง)๐‘‘๐‘ง

1

โˆฎ๐ถ (๐‘งโˆ’๐‘ง

0)

โˆฎ๐ถ (๐‘งโˆ’๐‘ง

1

0)

(๐‘˜+1)+1

๐‘“(๐‘ง)๐‘‘๐‘ง

Hence, the theorem is true for ๐‘› = ๐‘˜ + 1
๐‘›!

๐‘“(๐‘ง)
๐‘›+1
0)

โˆด ๐‘“ ๐‘› (๐‘ง0 ) = 2๐œ‹๐‘– โˆฎ๐ถ (๐‘งโˆ’๐‘ง

----------------------- (1)

Since, ๐‘ง0 is a point of ๐ท, so by eqn (1), ๐‘“ ๐‘› (๐‘ง0 ) is analytic in ๐ท
...


Liouvilleโ€™s Theorem
Statement: If a function ๐‘“(๐‘ง) is analytic for all finite values of ๐‘ง and is bounded, then it is a constant
...
Since ๐‘“(๐‘ง) is bounded, so |๐‘“(๐‘ง)| โ‰ค ๐‘€ where ๐‘€ is a positive constant
...
Take the contour ๐ถ to be a large circle with its centre at the origin and
radius ๐‘… enclosing the points ๐‘ง1 ๐‘Ž๐‘›๐‘‘ ๐‘ง2 so that, ๐‘… > |๐‘ง1 | and ๐‘… > |๐‘ง2 |
...

โˆซ ๐‘…๐‘‘๐œƒ
2๐œ‹ (๐‘…โˆ’|๐‘ง2 |)(๐‘…โˆ’|๐‘ง1 |) 0
|๐‘ง1 โˆ’๐‘ง2 |2๐œ‹๐‘…
1

...

Note: A function which is analytic in the whole of the ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ is called an entire function
...
Evaluate โˆฎ๐ถ (๐‘ง+1)5 ๐‘‘๐‘ง where ๐ถ is the circle |๐‘ง| = 2
...
Let ๐ผ = โˆฎ๐ถ (๐‘ง+1)5 ๐‘‘๐‘ง
Here, ๐‘ง = โˆ’1 is a point within ๐ถ, at which the integrand is not analytic
...
Evaluate โˆฎ๐ถ ๐‘ง2 (๐‘ง2โˆ’4) ๐‘‘๐‘ง where ๐ถ is the circle |๐‘ง| = 1
...
Let ๐ผ = โˆฎ๐ถ ๐‘ง2 (๐‘ง2 โˆ’4) ๐‘‘๐‘ง = โˆฎ๐ถ ๐‘ง2(๐‘ง+2)(๐‘งโˆ’2) ๐‘‘๐‘ง
Here, ๐‘ง = 0 is only point within ๐ถ, at which the
integrand is not analytic
...
2๐‘ง
๐‘‘
๐‘’ โˆ’๐‘ง
= 2๐œ‹๐‘–
...
[
]
(๐‘ง 2 โˆ’ 4)2
๐‘‘๐‘ง ๐‘ง โˆ’ 4 ๐‘ง=0
๐‘ง=0
(0 โˆ’ 4)(โˆ’๐‘’ โˆ’0 ) โˆ’ 0
= 2๐œ‹๐‘–
...
[16] =

๐…๐’Š

...
Show that โˆฎ๐ถ (๐‘ง2 +4)2 = 16; ๐ถ โ‰ก |๐‘ง โˆ’ ๐‘–| = 2
...
Let ๐ผ = โˆฎ๐ถ (๐‘ง2 +4)2 = โˆฎ๐ถ (๐‘ง+2๐‘–)2(๐‘งโˆ’2๐‘–)2
Here, ๐‘ง = 2๐‘– is only point within ๐ถ, at which the
integrand is not analytic
...
[๐‘‘๐‘ง {(๐‘ง+2๐‘–)2 }]

โˆ’2

= 2๐œ‹๐‘–
...
[โˆ’64๐‘–] = ๐Ÿ๐Ÿ”
...
Evaluate โˆฎ๐ถ (๐‘ง+1)2(๐‘ง2 +4) ๐‘‘๐‘ง, where ๐ถ is the circle |๐‘ง| = 3
...
Let ๐ผ = โˆฎ๐ถ (๐‘ง+1)2(๐‘ง2+4) ๐‘‘๐‘ง = โˆฎ๐ถ (๐‘ง+1)2(๐‘ง+2๐‘–)(๐‘งโˆ’2๐‘–)
๐‘ง2 โˆ’2๐‘ง

๐ผ=

[ 2 ]
๐‘ง +4
โˆฎ๐ถ (๐‘ง+1)
2 ๐‘‘๐‘ง
1

๐‘ง2 โˆ’2๐‘ง

+ โˆฎ๐ถ

[(๐‘ง+1)2 (๐‘งโˆ’2๐‘–)]
๐‘ง+2๐‘–

2

๐‘ง2 โˆ’2๐‘ง

๐‘‘๐‘ง + โˆฎ๐ถ

[(๐‘ง+1)2(๐‘ง+2๐‘–)]

3

๐‘งโˆ’2๐‘–

๐‘‘๐‘ง

Where, ๐ถ1 , ๐ถ2 & ๐ถ3 are circles of very small radius with
centres at ๐‘ง = โˆ’1, ๐‘ง = โˆ’2๐‘– & ๐‘ง = 2๐‘– respectively
...

where ak are complex constants, is called a power series in (๐‘ง โˆ’ ๐‘ง0 )
...


Circle of Convergence
๐‘˜
Every complex power series โˆ‘โˆž
๐‘˜=0 ๐‘Ž๐‘˜ (๐‘ง โˆ’ ๐‘ง0 ) has radius of convergence R and has a circle of convergence defined
by |z โ€“ z0| = R, 0 < R < ๏‚ฅ
...

(ii) a finite number (converges at all interior points of the circle (|z โˆ’ z0| = R)
...


A power series may converge at some, all, or none of the points on the circle of
convergence
...
Consider the series โˆ‘โˆž
๐‘˜=1
lim |

๐‘›โ†’โˆž

๐‘ง๐‘›+2
๐‘›+1
๐‘ง๐‘›+1
๐‘›

๐‘›+1
|๐‘ง|
๐‘›โ†’โˆž ๐‘›

| = lim

๐‘ง ๐‘˜+1
,
๐‘˜

by ratio test
...
O
...
using ratio test for the power series โˆ‘โˆž
๐‘˜=0 ๐‘Ž๐‘˜ (๐‘ง โˆ’ ๐‘ง0 )

(i)
(ii)
(iii)

๐‘Ž๐‘›+1
|
๐‘›โ†’โˆž ๐‘Ž๐‘›
๐‘Ž
lim | ๐‘›+1 |
๐‘›โ†’โˆž ๐‘Ž๐‘›
๐‘Ž
lim | ๐‘Ž๐‘›+1 |
๐‘›โ†’โˆž
๐‘›

lim |

1

= ๐ฟ โ‰  0, the R
...
C
...

= 0 the R
...
C
...

= โˆž the R
...
C
...


To find R
...
C
...
O
...
is ๏‚ฅ
...
O
...
using root test
6๐‘˜+1 ๐‘˜

๐‘˜
Consider the power series โˆ‘โˆž
๐‘˜=1 (2๐‘˜+5) (๐‘ง โˆ’ 2๐‘–)

๐‘Ž๐‘› = (

6๐‘› + 1 ๐‘›
6๐‘› + 1
๐‘›
) , lim โˆš|๐‘Ž๐‘› | = lim
=3
๐‘›โ†’โˆž
๐‘›โ†’โˆž 2๐‘› + 5
2๐‘› + 5
1

1

This root test shows the R
...
C
...
The circle of convergence is |๐‘ง โˆ’ 2๐‘–| = 3 ; the series converges absolutely for
1

|๐‘ง โˆ’ 2๐‘–| <
...
๐‘“ ๐‘› (๐‘ง0 ) = ๐‘›! ๐‘Ž๐‘›
๐‘Ž๐‘› =

๐‘“ ๐‘› (๐‘ง0 )
โ€„, โ€„๐‘› โ‰ฅ 0
๐‘›!

When ๐‘› = 0, We interpret the zeroth derivative as ๐‘“(๐‘ง0 )
Now, we have
๐‘“(๐‘ง) = โˆ‘โˆž
๐‘˜=0

๐‘“๐‘˜ (๐‘ง0 )
(๐‘ง
๐‘˜!

โˆ’ ๐‘ง0 )๐‘˜

This series is called the Taylor series for f centered at ๐‘ง0
...


Laurentโ€™s Series
If ๐‘“(๐‘ง) is analytic inside and on the boundary of the annular region ๐‘… bounded by two concentric circles ๐ถ1 ๐‘Ž๐‘›๐‘‘ ๐ถ2 of
radii ๐‘Ÿ1 ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ2 (๐‘Ÿ1 > ๐‘Ÿ2 ) respectively having centre at ๐‘ง0 , โˆ€ ๐‘ง ๐‘–๐‘› ๐‘…
โˆž
๐‘›
โˆ’๐‘›
๐‘“(๐‘ง) = โˆ‘โˆž
๐‘›=0 ๐‘Ž๐‘› (๐‘ง โˆ’ ๐‘ง0 ) + โˆ‘๐‘›=1 ๐‘๐‘› (๐‘ง โˆ’ ๐‘ง0 )

Where,
๐‘Ž๐‘› =

1
๐‘“(๐‘ค)
โˆฎ
๐‘‘๐‘ง ; ๐‘› = 0,1,2,3, โ€ฆ โ€ฆ
...


โˆž
n
โˆ’n
we have, f(z) = โˆ‘โˆž
-------------------- (1)
n=0 a n (z โˆ’ z0 ) + โˆ‘n=1 b(z โˆ’ z0 )
The part with negative powers is called the principal part of (1) and will converge for |๐‘ง โˆ’ ๐‘ง0 | > ๐‘Ÿ1
...

Hence the sum of these parts converges when๐‘Ÿ1 < |๐‘ง โˆ’ ๐‘ง0 | < ๐‘Ÿ2
...
The function ๐‘“(๐‘ง) =

sin ๐‘ง
๐‘ง3

is not analytic at ๐‘ง = 0 and hence can not be expanded in a Maclaurin series
...
Thus
sin ๐‘ง = ๐‘ง โˆ’
๐‘“(๐‘ง) =

sin ๐‘ง
๐‘ง3

๐‘ง3
3!

+
1

๐‘ง5
5!

โˆ’
1

๐‘ง7
7!

= ๐‘ง2 โˆ’ 3! +

+ โ‹ฏ โ€ฆ โ€ฆ
...


This series converges for all ๐‘ง except ๐‘ง = 0, 0 < |๐‘ง|
...
Expand ๐‘“(๐‘ง) = ๐‘ง(๐‘งโˆ’1) in a Laurent series valid 1 < |๐‘ง โˆ’ 2| < 2
Solution
...
]

โˆ’ โ‹ฏ โ€ฆ
...
]
1

1

1

= ๐‘งโˆ’2 โˆ’ (๐‘งโˆ’2)2 + (๐‘งโˆ’2)3 โˆ’ โ‹ฏ โ€ฆ
...
Expand ๐‘“(๐‘ง) = ๐‘ง(1โˆ’๐‘ง) in a Laurent series valid for 0 < |๐‘ง| < 1
...
We can write
8๐‘ง+1

๐‘“(๐‘ง) = ๐‘ง(1โˆ’๐‘ง) =

8๐‘ง+1 1
[1โˆ’๐‘ง]
๐‘ง

1

= (8 + ๐‘ง) [1 + ๐‘ง + ๐‘ง 2 + โ‹ฏ โ€ฆ
...

๐‘ง3

Example
...

๐‘ง3

Solution
...
Expand ๐‘“(๐‘ง) = ๐‘ง2 โˆ’1 about ๐‘ง = ๐‘–
...
๐‘“(๐‘ง) = ๐‘ง2 +1 = 2๐‘– (๐‘งโˆ’๐‘– โˆ’ ๐‘ง+๐‘–) = 2๐‘– (๐‘งโˆ’๐‘– โˆ’ 2๐‘–+๐‘งโˆ’๐‘–)
โˆž

1
1
1
1
1 1
1
1 ๐‘›
= (
โˆ’ โ‹…
)=
โˆ’
โˆ‘
(โˆ’
) (๐‘ง โˆ’ ๐‘–)๐‘›
2๐‘– ๐‘ง โˆ’ ๐‘– 2๐‘– 1 + ๐‘ง โˆ’ ๐‘–
2๐‘– ๐‘ง โˆ’ ๐‘– (2๐‘–)2
2๐‘–
๐‘›=0
2๐‘–
๐‘– 1
1 ๐‘–
=โˆ’
+ + (๐‘ง โˆ’ ๐‘–) โ€ฆ โ€ฆ
...

An analytic function ๐‘“(๐‘ง) is said to have a zero of order ๐‘š if ๐‘“(๐‘ง) is expressible as
๐‘“(๐‘ง) = (๐‘ง โˆ’ ๐‘Ž)๐‘š ๐œ™(๐‘ง), where ๐œ™(๐‘ง) is analytic and ๐œ™(๐‘Ž) โ‰  0
Singularity:
A point ๐‘ง0 is said to be a singular point or singularity of ๐‘“(๐‘ง) if ๐‘“(๐‘ง) fails to be analytic at ๐‘ง0 but is analytic at some
point in the neighbourhood of ๐‘ง0
...

๐‘ง+1

Example
...
Thus ๐‘ง = 0 and ๐‘ง = 2 are the only singularities of this function
...
Hence ๐‘ง = 0 and ๐‘ง = 2 are the
isolated singularities of this function
...
at the points where
โ‡’๐‘ง=

1
๐‘›

๐œ‹
๐‘ง

= ๐‘›๐œ‹

(1, 2, 3, โ€ฆ โ€ฆ โ€ฆ โ€ฆ )
1 1
2 3

Thus ๐‘ง = 1, , , โ€ฆ โ€ฆ โ€ฆ
...
Therefore, ๐‘ง = 0
is an non-isolated singularity of the given function
...
+
+ โ‹ฏโ€ฆ
(๐‘ง โˆ’ ๐‘ง0 )๐‘›
๐‘ง โˆ’ ๐‘ง0 (๐‘ง โˆ’ ๐‘ง0 )2 (๐‘ง โˆ’ ๐‘ง0 )3

The first series on the right side of Laurent expansion is the regular part ( Taylor series) while series with negative
powers of (๐‘ง โˆ’ ๐‘ง0 ) is called Principal Part
...
P
...
Moreover, the nomenclature is justified
as it can be removed by appropriately defining the function at ๐‘ง = ๐‘ง0
...


Note that it has a removable singularity at ๐‘ง = 0 due to the absence of the Principal Part in the Laurent expansion
...

Essential Singularity: If the Principal Part in the Laurent series expansion of a function ๐‘“(๐‘ง)in some deleted
neighbourhood of ๐‘ง0 contains infinitely many terms then ๐‘ง0 is called an essential singularity of ๐‘“(๐‘ง)
...

Suppose ๐‘๐‘š โ‰  0, ๐‘๐‘š+1 = ๐‘๐‘š+2 = ๐‘๐‘š+3 = โ‹ฏ โ€ฆ โ€ฆ โ€ฆ โ€ฆ = 0, then the point ๐‘ง0 is termed as a Pole of order ๐‘š
...

๐‘’๐‘ง

The function ๐‘“(๐‘ง) = (๐‘งโˆ’1)3 has a pole of order 3 since
๐‘’๐‘ง

๐‘“(๐‘ง) = (๐‘งโˆ’1)3 =

๐‘’
...

(2) The limit point of the poles of a function ๐‘“(๐‘ง) is a non-isolated essential singularity
...
Find out the zero and discuss the nature of the singularity of ๐‘“(๐‘ง) =

๐‘งโˆ’2
๐‘ง2

1

sin ๐‘งโˆ’1

Solution
...

1

1

sin ๐‘งโˆ’1 = 0 โ‡’ ๐‘งโˆ’1 = ๐‘›๐œ‹,
1

โ‡’ ๐‘ง = 1 + ๐‘›๐œ‹ ,

๐‘›โˆˆโ„ค

๐‘›โˆˆโ„ค

which are also zeros of order 1
...

Again, to obtain the poles of ๐‘“(๐‘ง) equating to zero its denominator we get
๐‘ง 2 = 0 โ‡’ ๐‘ง = 0, 0
Hence ๐‘ง = 0 is a pole of order 2
...
Discuss the nature of the singularity of ๐‘“(๐‘ง) =
Solution
...


1

= ๐‘ง3 (๐‘ง โˆ’ sin ๐‘ง)

โˆ’ (๐‘ง โˆ’

๐‘ง2
5!

๐‘งโˆ’sin ๐‘ง
๐‘ง3

+

๐‘ง4
7!

๐‘ง3
3!

+

๐‘ง5
5!

โˆ’

๐‘ง7
7!

+ โ‹ฏ โ€ฆ โ€ฆ โ€ฆ )] =

1 ๐‘ง3
(
๐‘ง 3 3!

โˆ’

๐‘ง5
5!

+

๐‘ง7
7!

+ โ‹ฏโ€ฆโ€ฆโ€ฆ)

+ โ‹ฏโ€ฆโ€ฆ

Since there is no term in the principal part of the given function hence ๐‘ง = 0 is a removable singularity
...
Discuss singularity of ๐‘“(๐‘ง) = (๐‘งโˆ’๐‘Ž)2 at ๐‘ง = ๐‘Ž and ๐‘ง = โˆž
...
We have ๐‘“(๐‘ง) = (๐‘งโˆ’๐‘Ž)2 = (๐‘งโˆ’๐‘Ž)2 sin ๐œ‹๐‘ง
Poles of ๐‘“(๐‘ง) are given by (๐‘ง โˆ’ ๐‘Ž)2 sin ๐œ‹๐‘ง = 0
โ‡’ z = ๐‘Ž, ๐‘›, ๐‘› โˆˆ โ„ค
z = ๐‘Ž is a pole of order 2 and since z = โˆž is a limit point of these poles, therefore z = โˆž is a non-isolated essential
singularity
...
โ‹ฏ
0

0

0

0

1

The residue of a function is the coefficient of the term ๐‘งโˆ’๐‘ง (๐‘–
...

0

โˆ’2๐‘ง+3

1

1

1

๐‘ง

Example
...
1โˆ’๐‘ง = 1 + ๐‘ง + ๐‘ง 2 + ๐‘ง 3 + โ‹ฏ โ€ฆ โ€ฆ โ€ฆ
...

There are two methods:
1
...
By Formula (Use formula directly)

Formula for finding the residue for a simple pole:
If ๐‘“(๐‘ง) has a simple pole at ๐‘ง0 , then the Laurent series is:
๐‘

๐‘“(๐‘ง) = ๐‘Ž0 + ๐‘Ž1 (๐‘ง โˆ’ ๐‘ง0 ) + โ‹ฏ + ๐‘งโˆ’๐‘ง1 (0 < |๐‘ง โˆ’ ๐‘ง0 | < ๐‘…)Or (๐‘ง โˆ’ ๐‘ง0 )๐‘“(๐‘ง) = ๐‘Ž0 (๐‘ง โˆ’ ๐‘ง0 ) + ๐‘Ž1 (๐‘ง โˆ’ ๐‘ง0 )2 + โ‹ฏ + ๐‘1
0

19 | P a g e

Taking ๐‘™๐‘–๐‘š๐‘–๐‘ก as ๐‘ง โ†’ ๐‘ง0
lim ( ๐‘ง โˆ’ ๐‘ง0 )๐‘“(๐‘ง) = ๐‘1

๐‘งโ†’๐‘ง0

OR Res ๐‘“(๐‘ง) = ๐‘1
๐‘ง=๐‘ง0

= lim ( ๐‘ง โˆ’ ๐‘ง0 )๐‘“(๐‘ง)
๐‘งโ†’๐‘ง0

โˆด Res ๐‘“(๐‘ง) = lim ( ๐‘ง โˆ’ ๐‘ง0 )๐‘“(๐‘ง)
๐‘งโ†’๐‘ง0

๐‘ง=๐‘ง0

2๐‘งโˆ’๐‘–

Example
...

Solution
...
[

1
{1+

๐‘งโˆ’๐‘– 2
}
2๐‘–

]

(๐‘งโˆ’๐‘–)
๐‘–
(๐‘งโˆ’๐‘–)2
(๐‘งโˆ’๐‘–)3

...
]
]
2
4(๐‘งโˆ’๐‘–)
2๐‘–
(2๐‘–)
(2๐‘–)3
๐‘– 1
1
5
1
โˆ’ 4 ๐‘งโˆ’๐‘– โˆ’ 4 โˆ’ 16 (๐‘ง โˆ’ ๐‘–) + 2 (๐‘ง โˆ’ ๐‘–)2 โ‹ฏ โ€ฆ (0 < |๐‘ง โˆ’ ๐‘–| < 2)
1
2

= [โˆ’ โˆ’
=

๐‘ง+1

Example
...
Res๐‘“(๐‘ง) = lim ๐‘ง ๐‘ง(๐‘งโˆ’2) = lim ๐‘งโˆ’2 = โˆ’ 2
๐‘งโ†’0

๐‘ง=0

๐‘งโ†’0

๐‘ง+1

๐‘ง+1
๐‘งโ†’2 ๐‘ง

Res๐‘“(๐‘ง) = lim( ๐‘ง โˆ’ 2) ๐‘ง(๐‘งโˆ’2) = lim
๐‘งโ†’2

๐‘ง=2

3

=2

(Residues by definition) Laurent series are:
๐‘ง+1

๐‘“(๐‘ง) = ๐‘ง(๐‘งโˆ’2) = โˆ’
=โˆ’
๐‘“(๐‘ง) =

๐‘ง+1
๐‘ง
{1 + 2 +
2๐‘ง

๐‘ง+1
๐‘ง(๐‘งโˆ’2)

=

๐‘ง+1
1
{
}
2๐‘ง 1โˆ’๐‘ง/2

=

๐‘ง2
22

1

(๐‘งโˆ’2)+3
1
[
]
(๐‘งโˆ’2) 2+(๐‘งโˆ’2)

=

(๐‘งโˆ’2)+3
๐‘งโˆ’2
(๐‘งโˆ’2)2
โˆ’
+ 2
[1
2(๐‘งโˆ’2)
2
2
3

1

1

= 2
...
]

(๐‘งโˆ’2)2
8

+ โ‹ฏ โ€ฆ
...
Find the residues of ๐‘“(๐‘ง) = ๐‘ง2 +9
๐‘ง+1

๐‘ง+1

Solution
...

๐Ÿ”

Example
...
Here ๐‘“(๐‘ง) = cot ๐‘ง or ๐‘“(๐‘ง) =

cos ๐‘ง
sin ๐‘ง

Poles of ๐‘“(๐‘ง) are given by
sin ๐‘ง = 0 โ‡’ ๐‘ง = ๐‘›๐œ‹
cos ๐‘ง

[๐‘…๐‘’๐‘ 
...

Differentiate
๐‘‘
[(๐‘ง
๐‘‘๐‘ง

โˆ’ ๐‘ง0 )2 ๐‘“(๐‘ง)] = 2๐‘Ž0 (๐‘ง โˆ’ ๐‘ง0 ) + 3๐‘Ž1 (๐‘ง โˆ’ ๐‘ง0 )2 + โ‹ฏ โ€ฆ โ‹ฏ + ๐‘1

Taking ๐‘™๐‘–๐‘š๐‘–๐‘ก as ๐‘ง โ†’ ๐‘ง0
lim

๐‘‘

๐‘งโ†’๐‘ง0 ๐‘‘๐‘ง

[(๐‘ง โˆ’ ๐‘ง0 )2 ๐‘“(๐‘ง)] = ๐‘1

โˆด Res ๐‘“(๐‘ง) = lim

๐‘‘

๐‘งโ†’๐‘ง0 ๐‘‘๐‘ง

๐‘ง=๐‘ง0

[(๐‘ง โˆ’ ๐‘ง0 )2 ๐‘“(๐‘ง)]
1

Example
...

Solution
...
Find the residue of ๐‘“(๐‘ง) =
Solution
...
โ‹ฏ}

21 | P a g e

=
=

(๐‘งโˆ’1)
(๐‘งโˆ’1)+1
1
1
1
{(๐‘งโˆ’1)2 โˆ’ 3(๐‘งโˆ’1) + 32 โˆ’ 33 โ€ฆ โ€ฆ
...
(๐‘งโˆ’1) โˆ’ 27 + 81 โˆ’ โ‹ฏ โ€ฆ โ€ฆ โ‹ฏ (0
3(๐‘งโˆ’1)2

< |๐‘ง โˆ’ 1| < 3)

Formula for finding the residue for a pole of any order:
If ๐‘“(๐‘ง) has a pole of order ๐‘š at ๐‘ง0 , then the Laurent series is
๐‘“(๐‘ง) = ๐‘Ž0 + ๐‘Ž1 (๐‘ง โˆ’ ๐‘ง0 ) + โ‹ฏ โ€ฆ
...
โ‹ฏ + ๐‘1 (๐‘ง โˆ’ ๐‘ง0 )๐‘šโˆ’1
+๐‘2 (๐‘ง โˆ’ ๐‘ง0 )๐‘šโˆ’2 + โ‹ฏ โ€ฆ โ€ฆ โ‹ฏ + ๐‘๐‘š
Now, differentiate (๐‘š โˆ’ 1) times and let ๐‘ง โ†’ ๐‘ง0 to get
๐‘‘ ๐‘šโˆ’1
[(๐‘ง
๐‘งโ†’๐‘ง0 ๐‘‘๐‘ง ๐‘šโˆ’1

โˆด lim

โˆ’ ๐‘ง0 )๐‘š ๐‘“(๐‘ง)] = (๐‘š โˆ’ 1)! ๐‘1
๐‘‘ ๐‘šโˆ’1

1

Res ๐‘“(๐‘ง) = (๐‘šโˆ’1)! lim [๐‘‘๐‘ง๐‘šโˆ’1 {(๐‘ง โˆ’ ๐‘ง0 )๐‘š ๐‘“(๐‘ง)}]
๐‘งโ†’๐‘ง0

๐‘ง=๐‘ง0

๐‘‘ ๐‘šโˆ’1

1

OR Res ๐‘“(๐‘ง) = (๐‘šโˆ’1)! [๐‘‘๐‘ง๐‘šโˆ’1 {(๐‘ง โˆ’ ๐‘ง0 )๐‘š ๐‘“(๐‘ง)}]
๐‘ง=๐‘ง0

Example
...
Here ๐‘“(๐‘ง) =

๐‘ง=๐‘ง0

sinh ๐‘ง

...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=โˆž = ๐‘™๐‘–๐‘š[โˆ’๐‘ง๐‘“(๐‘ง)]
๐‘งโ†’0

OR
1
๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘“(๐‘ง)]
๐‘ง

[๐‘…๐‘’๐‘ 
...
Find the residue of ๐‘“(๐‘ง) = ๐‘ง2 โˆ’1 at ๐‘ง = โˆž
...
We have, ๐‘“(๐‘ง) = ๐‘ง2 โˆ’1 =

๐‘ง3
1
๐‘ง

๐‘ง 2 (1โˆ’ 2 )

1 โˆ’1

= ๐‘ง (1 โˆ’ ๐‘ง2 )
1

1

1

= ๐‘ง + ๐‘ง + ๐‘ง3 + ๐‘ง 5 + โ‹ฏ โ€ฆโ€ฆ
1

[๐‘…๐‘’๐‘ 
...
Evaluate โˆซ๐‘ ๐‘ง sin ๐‘ง , ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ถ: |๐‘ง| = 1
1

Solution
...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=0 = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ = 0
๐‘ง
โˆด โˆซ๐‘

๐‘‘๐‘ง
๐‘ง sin ๐‘ง

= 2๐œ‹๐‘– ร— 0 = 0
...
Evaluate โˆณ๐ถ (๐‘งโˆ’1)2(๐‘งโˆ’3) ๐‘‘๐‘ง , where ๐ถ is the circle |๐‘ง| = 2
...
Since only the pole ๐‘ง = 1 lies within the circle, then there is only one singular point ๐‘ง = 1 within ๐ถ, then
1

โˆณ๐ถ (๐‘งโˆ’1)2 (๐‘งโˆ’3) ๐‘‘๐‘ง = 2๐œ‹๐‘–
...
1! lim [๐‘‘๐‘ง (๐‘ง โˆ’ 1)2 (๐‘งโˆ’1)2 (๐‘งโˆ’3)]
๐‘งโ†’1

= 2๐œ‹๐‘–
...
If a function ๐‘“ is analytic
on and within ๐ถ, except at a finite number of singular points ๐‘ง1 , ๐‘ง2 , ๐‘ง3 , โ€ฆ โ€ฆ โ€ฆ โ€ฆ
...
โˆ‘๐‘›๐‘˜=1[๐‘…๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง๐‘˜
Proof
...
+โˆฎ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง
1

2

๐‘›

= โˆ‘๐‘›๐‘˜=1 [โˆฎ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง]
๐‘˜

= โˆ‘๐‘›๐‘˜=1[2๐œ‹๐‘–
...
Evaluate โˆฎ๐ถ (๐‘งโˆ’1)2(2๐‘ง+3) ๐‘‘๐‘ง, where ๐ถ โ‰ก |๐‘ง| = 2
...
Let ๐‘“(๐‘ง) = (๐‘งโˆ’1)2(2๐‘ง+3)
Here, ๐‘ง = 1 & ๐‘ง =

3
โˆ’2

are two poles and both lie within ๐ถ
...
๐‘“(๐‘ง)]๐‘ง=1 = lim [ (๐‘ง โˆ’ 1)2
...
๐‘“(๐‘ง)]๐‘ง=โˆ’3 = lim3 [(๐‘ง + )
...
[๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’๐‘  ๐‘Ž๐‘ก ๐‘๐‘œ๐‘™๐‘’๐‘  ๐‘ค๐‘–๐‘กโ„Ž๐‘–๐‘› ๐ถ]
86

86

= 2๐œ‹๐‘–
...

2+๐‘ง

Example
...

2+๐‘ง

2+๐‘ง

2+๐‘ง

Solution
...
{lim ๐‘งโˆ’1 + lim
๐‘งโ†’0

2+๐‘ง

โˆด โˆฎ๐ถ ๐‘ง2 โˆ’๐‘ง ๐‘‘๐‘ง = 2๐œ‹๐‘–
...
Evaluate โˆซ๐‘ ๐‘ง(๐‘งโˆ’2)4

Solution
...
๐‘œ๐‘“ ๐‘ง(๐‘งโˆ’2)4 ]

=

๐‘ง=2

๐‘‘๐‘ง

1
๐‘‘3
lim [ 3 (๐‘ง
3 ! ๐‘งโ†’2 ๐‘‘๐‘ง

1

โˆด โˆซ๐‘ ๐‘ง(๐‘งโˆ’2)2 = 2๐œ‹๐‘– (โˆ’ 16) = โˆ’

โˆ’ 2)4

1
]
๐‘ง(๐‘งโˆ’2)4

=โˆ’

C

1
16

๐…๐’Š

...
show โˆซ๐‘๐‘’ ๐‘ง2 ๐‘‘๐‘ง = 0 , where ๐ถ: |๐‘ง| = 1
1

Solution
...
๐‘œ๐‘“ ๐‘’ ๐‘ง2 ]

+

1
3!

=0
๐‘ง=0

1
๐‘ง6

+ โ‹ฏ
...
Evaluate โˆซ๐‘ ๐‘ง(๐‘งโˆ’1) ๐‘‘๐‘ง

where ๐ถ: |๐‘ง| = 2

Solution
...
๐‘“(๐‘ง)]๐‘ง=0 = lim [๐‘ง
...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=1 = lim [(๐‘ง โˆ’ 1) ๐‘ง(๐‘งโˆ’1)] = 3
๐‘งโ†’1

โˆด

5๐‘งโˆ’2
โˆซ๐‘ ๐‘ง(๐‘งโˆ’1)

0

2

๐‘‘๐‘ง = 2๐œ‹ ๐‘– (2 + 3) = ๐Ÿ๐ŸŽ๐…๐’Š
...
Poles are ๐‘ง = 0, ๐‘ง = 1
(a) when 0 < |๐‘ง| < 1
5๐‘งโˆ’2

๐‘“(๐‘ง) = ๐‘ง(๐‘งโˆ’1) =

5๐‘งโˆ’2
๐‘ง


...
)
๐‘1 = ๐ต1 = [๐‘…๐‘’๐‘ 
...
1+(๐‘งโˆ’1)
๐‘งโˆ’1
3
= (5 + ๐‘งโˆ’1) [1 โˆ’ (๐‘ง

=

โˆ’ 1) + (๐‘ง โˆ’ 1)2
...

๐‘ง

1

Example
...

๐‘ง

๐‘ง

Solution
...

๐‘ง

[๐‘…๐‘’๐‘ 
...

]
(๐‘งโˆ’2)(๐‘งโˆ’1)

|๐‘ง โˆ’ 2| =

1
2

๐‘งโ†’2

๐‘ง

= [๐‘งโˆ’1]

=2

๐‘ง=2

By Cauchyโ€™s Residue Theorem
๐‘ง

โˆฎ๐ถ ๐‘ง2 โˆ’3๐‘ง+2 ๐‘‘๐‘ง = 2๐œ‹๐‘–
...
[2] = ๐Ÿ’๐…๐’Š
...
Evaluate โˆฎ๐ถ ๐‘ง2 +2๐‘ง+5 ๐‘‘๐‘ง, where ๐ถ is the circle |๐‘ง + 1 โˆ’ ๐‘–| = 2
...
Let ๐‘“(๐‘ง) = ๐‘ง2 +2๐‘ง+5 = (๐‘งโˆ’๐›ผ)(๐‘งโˆ’๐›ฝ), where ๐›ผ = โˆ’1 + 2๐‘–, ๐›ฝ = โˆ’1 โˆ’ 2๐‘–
Here, poles are ๐‘ง = ๐›ผ & ๐‘ง = ๐›ฝ, but only ๐‘ง = ๐›ผ lies within ๐ถ
...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=๐›ผ = lim [(๐‘ง โˆ’ ๐›ผ)
...
[๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’๐‘  ๐‘Ž๐‘ก ๐‘๐‘œ๐‘™๐‘’๐‘  ๐‘ค๐‘–๐‘กโ„Ž๐‘–๐‘› ๐ถ]
= 2๐œ‹๐‘–
...


25 | P a g e

Contour Integration
Contour Integral: The contour integral of a complex function ๐‘“: ๐ถ โ†’ ๐ถ is a generalization of the integral for realvalued functions
...
Contour integration is closely related to the calculus of residues
...

Consider a circle C: |๐‘ง| = 1 as contour |๐‘ง| = 1 โ‡’ ๐‘ง = ๐‘’ ๐‘–๐œƒ
1

1

1

1

1

1

cos ๐œƒ = 2 (๐‘’ ๐‘–๐œƒ + ๐‘’ โˆ’๐‘–๐œƒ ) = 2 (๐‘ง + ๐‘ง), sin ๐œƒ = 2๐‘– (๐‘’ ๐‘–๐œƒ โˆ’ ๐‘’ โˆ’๐‘–๐œƒ ) = 2๐‘– (๐‘ง โˆ’ ๐‘ง)
and ๐‘‘๐œƒ =

๐‘‘๐‘ง
๐‘–๐‘ง

; 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹
๐‘ง+๐‘ง โˆ’1 ๐‘งโˆ’๐‘ง โˆ’1 ๐‘‘๐‘ง
,
)
2
2๐‘–
๐‘–๐‘ง

2๐œ‹

โˆด โˆซ0 ๐น (cos ๐œƒ , sin ๐œƒ)๐‘‘๐œƒ = โˆณ๐ถ ๐น (

2๐œ‹

Example
...
Let I = โˆซ0

1
๐‘‘๐œƒ
(2+cos ๐œƒ)2

1
๐‘‘๐œƒ
(2+cos ๐œƒ)2
1

1

put cos ๐œƒ = [๐‘ง + ] , ๐‘‘๐œƒ =
2
๐‘ง
4
๐‘–

โˆด ๐ผ = โˆณ๐ถ
4
๐‘–

= โˆณ๐ถ

๐‘ง
โ€„๐‘‘๐‘ง
(๐‘ง 2 +4๐‘ง+1)2

๐‘‘๐‘ง
๐‘–๐‘ง

, where ๐ถ: |๐‘ง| = 1

|๐’›|
C= ๐Ÿ

๐‘ง
โ€„๐‘‘๐‘ง
(๐‘งโˆ’๐‘ง1 )2 (๐‘งโˆ’๐‘ง2 )2

where, ๐‘ง1 = โˆ’2 + โˆš3 , ๐‘ง2 = โˆ’2 โˆ’ โˆš3
Since only ๐‘ง1 is inside the unit circle ๐ถ
...
2ฯ€i
...
of f(z)]z=z1
Now, [Res
...

โˆš

26 | P a g e

2๐œ‹

Example
...
Let I = โˆซ0

1

1

put cos ๐œƒ = 2 [๐‘ง + ๐‘ง] , ๐‘‘๐œƒ =
2๐‘ง

๐‘‘๐‘ง
๐‘–๐‘ง

๐‘‘๐‘ง

โˆด ๐ผ = โˆณ๐ถ [๐‘๐‘ง2 +2๐‘Ž๐‘ง+๐‘] ( ๐‘–๐‘ง ) , where ๐ถ: |๐‘ง| = 1
2

= ๐‘–๐‘ โˆณ๐ถ

|๐’›| = ๐Ÿ
C

๐‘‘๐‘ง
2๐‘Ž
[๐‘ง 2 + ๐‘ง+1]
๐‘

2

= ๐‘–๐‘ โˆณ๐ถ (๐‘งโˆ’๐‘ง

๐‘‘๐‘ง

1 )(๐‘งโˆ’๐‘ง2 )

๐‘Ž

where ๐‘ง1 = โˆ’ ๐‘ +
Let ๐‘“(๐‘ง) = (๐‘งโˆ’๐‘ง

โˆš๐‘Ž 2 โˆ’๐‘2
๐‘

๐‘Ž

and ๐‘ง2 = โˆ’ ๐‘ โˆ’

1

โˆš๐‘Ž 2 โˆ’๐‘2
๐‘

2

โˆด ๐ผ = ๐‘–๐‘ โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง

1 )(๐‘งโˆ’๐‘ง2 )

----------(1)

Poles of ๐‘“(๐‘ง) are given by
(๐‘ง โˆ’ ๐‘ง1 )(๐‘ง โˆ’ ๐‘ง2 ) = 0 โ‡’ ๐‘ง = ๐‘ง1 , ๐‘ง2 (both are simple)
it is given that ๐‘Ž > |๐‘| โ‡’ |๐‘ง2 | > 1
โˆต ๐‘ง1
...
๐‘ง2 | = 1
โ‡’ |๐‘ง1 |
...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=๐‘ง1 = lim (๐‘ง โˆ’ ๐‘ง1 )๐‘“(๐‘ง)
๐‘งโ†’๐‘ง1

= lim

1

๐‘งโ†’๐‘ง1 (๐‘งโˆ’๐‘ง2 )

=

1
๐‘ง1 โˆ’๐‘ง2

โˆด โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = 2๐œ‹๐‘– (
2

From (1), ๐ผ = ๐‘–๐‘ [

=

๐‘
2โˆš๐‘Ž 2 โˆ’๐‘2

๐‘
2โˆš๐‘Ž2 โˆ’ ๐‘ 2

๐‘๐œ‹๐‘–
โˆš๐‘Ž2 โˆ’๐‘2

2๐œ‹

Solution
...
Evaluate โˆซ0

)=

โˆš๐‘Ž 2 โˆ’๐‘2

๐‘‘๐œƒ
๐‘Ž+๐‘ sin ๐œƒ

, where ๐‘Ž > |๐‘|

dฮธ
๐‘Ž+๐‘ sin ๐œƒ
1

1

put sin ๐œƒ = 2๐‘– [๐‘ง โˆ’ ๐‘ง] , ๐‘‘๐œƒ =
โˆด ๐ผ = โˆณ๐ถ [๐‘๐‘ง2

2๐‘–๐‘ง
๐‘‘๐‘ง
( ),
+2๐‘–๐‘Ž๐‘งโˆ’๐‘] ๐‘–๐‘ง

2

= ๐‘ โˆณ๐ถ

๐‘‘๐‘ง
๐‘–๐‘ง

where ๐ถ: |๐‘ง| = 1

|๐’›| = ๐Ÿ
C

๐‘‘๐‘ง
[๐‘ง 2 +

2

2๐‘–๐‘Ž
๐‘งโˆ’1]
๐‘

๐‘‘๐‘ง
1 )(๐‘งโˆ’๐‘ง2 )

= ๐‘ โˆณ๐ถ (๐‘งโˆ’๐‘ง
where ๐‘ง1 = โˆ’

๐‘–๐‘Ž
๐‘

+

๐‘–โˆš๐‘Ž 2 โˆ’๐‘2
๐‘

1
)(๐‘งโˆ’๐‘ง
1
2)

Let ๐‘“(๐‘ง) = (๐‘งโˆ’๐‘ง

and ๐‘ง2 = โˆ’

๐‘–๐‘Ž
๐‘

โˆ’

๐‘–โˆš๐‘Ž 2 โˆ’๐‘2
๐‘

2

โˆด ๐ผ = ๐‘ โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง ---------- (1)

Poles of ๐‘“(๐‘ง) are given by
27 | P a g e

(๐‘ง โˆ’ ๐‘ง1 )(๐‘ง โˆ’ ๐‘ง2 ) = 0 โ‡’ ๐‘ง = ๐‘ง1 , ๐‘ง2 (both are simple)
it is given that ๐‘Ž > |๐‘| โ‡’ |๐‘ง2 | > 1
โˆต ๐‘ง1
...
๐‘ง2 | = 1
โ‡’ |๐‘ง1 |
...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=๐‘ง1 = lim (๐‘ง โˆ’ ๐‘ง1 )๐‘“(๐‘ง)
๐‘งโ†’๐‘ง1

1

= lim

๐‘งโ†’๐‘ง1 (๐‘งโˆ’๐‘ง2 )

1

=๐‘ง

1 โˆ’๐‘ง2

๐‘

โˆด โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = 2๐œ‹๐‘– (

2๐‘–โˆš๐‘Ž 2 โˆ’๐‘2

2

From (1), ๐ผ = ๐‘ [

๐‘๐œ‹
โˆš๐‘Ž 2 โˆ’๐‘2

=

)=

๐‘
2๐‘–โˆš๐‘Ž 2 โˆ’๐‘2
๐‘๐œ‹

โˆš๐‘Ž 2 โˆ’๐‘2

2๐œ‹

]=

โˆš๐‘Ž 2 โˆ’๐‘2

2๐œ‹ cos 3๐œƒ
๐‘‘๐œƒ
5โˆ’4 cos ๐œƒ

Example
...
Let I = โˆซ0

2๐œ‹

๐ผ = ๐‘…๐‘’๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘ก ๐‘œ๐‘“ โˆซ0
put ๐‘’ ๐‘–๐œƒ = ๐‘ง , ๐‘‘๐œƒ =

๐‘’ 3๐‘–๐œƒ
dฮธ
5โˆ’4 cos ๐œƒ

2๐œ‹

= R
...
[โˆซ0

๐‘’ 3๐‘–๐œƒ
dฮธ]
5โˆ’2(๐‘’ ๐‘–๐œƒ +๐‘’ โˆ’๐‘–๐œƒ )

๐‘‘๐‘ง
๐‘–๐‘ง

๐‘ง3

๐‘‘๐‘ง

โˆด I = R
...
[โˆณ๐ถ 5โˆ’2(๐‘ง+๐‘งโˆ’1 ) ( ๐‘–๐‘ง )], where ๐ถ: |๐‘ง| = 1
๐‘ง3

1

1

= R
...
[โˆ’ ๐‘– โˆณ๐ถ 2๐‘ง2 โˆ’5๐‘งโˆ’2 ๐‘‘๐‘ง] = R
...
[โˆ’ 2๐‘– โˆณ๐ถ
๐‘ง3
,
1 )(๐‘งโˆ’๐‘ง2 )

Let ๐‘“(๐‘ง) = (๐‘งโˆ’๐‘ง
โˆด ๐ผ = R
...
[โˆ’

where ๐‘ง1 =

1
2

๐‘ง3
5
๐‘ง 2 โˆ’ ๐‘งโˆ’1
2

๐‘‘๐‘ง]

๐‘Ž๐‘›๐‘‘ ๐‘ง2 = 2

1
โˆณ ๐‘“(๐‘ง)๐‘‘๐‘ง]
2๐‘– ๐ถ

---------------- (1)

Poles of ๐‘“(๐‘ง) are given by (๐‘ง โˆ’ ๐‘ง1 )(๐‘ง โˆ’ ๐‘ง2 ) = 0 โ‡’ ๐‘ง = ๐‘ง1 , ๐‘ง2
(both are simple) it is very clear that only z1 lies inside the unit circle ๐ถ
...
๐‘œ๐‘“ ๐‘“(๐‘ง)]๐‘ง=๐‘ง1 = lim (๐‘ง โˆ’ ๐‘ง1 )๐‘“(๐‘ง) = lim
๐‘งโ†’๐‘ง1

โˆด โˆณ๐ถ ๐‘“(๐‘ง)๐‘‘๐‘ง = 2๐œ‹๐‘– (โˆ’

๐‘ง1 3
1 โˆ’๐‘ง2

=๐‘ง

1

= โˆ’ 12

1
๐‘–๐œ‹
)=โˆ’
12
6
1

๐‘–๐œ‹

๐…

From (1), ๐ผ = R
...
[โˆ’ 2๐‘– (โˆ’ 6 )] = ๐Ÿ๐Ÿ
...
Evaluate โˆซ0

2+cos ๐œƒ

2๐œ‹ ๐‘ ๐‘–๐‘›2 ๐œƒโˆ’2 cos ๐œƒ

Sol
...
P
...
P
...
P
...

Now, [๐‘…๐‘’๐‘ 
...
P
...

1โˆ’๐‘Ž sin ๐œƒ
(๐‘งโˆ’1/๐‘ง)/2๐‘– ๐‘‘๐‘ง
1
๐‘ง 2 โˆ’1
1
โˆฎ๐ถ 1โˆ’๐‘Ž(๐‘งโˆ’1/๐‘ง)/2๐‘– ๐‘–๐‘ง = ๐‘– โˆฎ๐ถ ๐‘ง โˆ’๐‘Ž๐‘ง2 +2๐‘–๐‘ง+๐‘Ž ๐‘‘๐‘ง

Example
...
๐ผ =

1โˆ’๐‘ง 2

1

= ๐‘–๐‘Ž โˆฎ๐ถ ๐‘ง(๐‘ง2 โˆ’2๐‘–๐‘ง/๐‘Žโˆ’1) ๐‘‘๐‘ง
We have 3 simple poles, ๐‘ง0 = 0 and ๐‘ง 2 โˆ’ 2๐‘–๐‘ง/๐‘Ž โˆ’ 1 = 0
โ‡’๐‘ง=

๐‘–
(1 ยฑ โˆš1 โˆ’ ๐‘Ž2 )
...
Res ๐‘“(0)
1 โˆ’ ๐‘ง2
1
= lim [๐‘ง
]=

...
Res
1 (๐‘ง1 โˆ’๐‘ง2 )

=๐‘ง

C

๐‘–
โˆ’2๐‘–
(1+โˆš1โˆ’๐‘Ž2 )โ‹…( ๐‘Ž โˆš1โˆ’๐‘Ž 2 )
๐‘Ž
2
๐‘Ž

(1+โˆš1โˆ’๐‘Ž2 )โˆš1โˆ’๐‘Ž2

๐‘Ž2
(1+โˆš1โˆ’๐‘Ž2 )โˆš1โˆ’๐‘Ž2

=

=

2๐œ‹๐‘Ž

(1+โˆš1โˆ’๐‘Ž2 )โˆš1โˆ’๐‘Ž2

2๐œ‹๐‘Ž
(1+โˆš1โˆ’๐‘Ž 2 )โˆš1โˆ’๐‘Ž 2

29 | P a g e

Semi Circular Contour
โˆž ๐‘“(๐‘ฅ)
๐‘‘๐‘ฅ ,
๐‘”(๐‘ฅ)

Integral of the type โˆซโˆ’โˆž

where ๐‘“(๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘”(๐‘ฅ) are polynomials in ๐‘ฅ, such that [๐‘ฅ

๐‘“(๐‘ฅ)
]
๐‘”(๐‘ฅ)

โ†’ 0 as ๐‘ฅ โ†’ โˆž and

(i) ๐‘”(๐‘ฅ) has no zeros on the real axis
(ii) the degree of ๐‘”(๐‘ฅ) is greater than that of ๐‘“(๐‘ฅ) by at least 2
...

๐‘“(๐‘ง)

Let ๐น(๐‘ง) = ๐‘”(๐‘ง)
By Residue theorem, we have
โˆฎ๐ถ ๐น(๐‘ง)๐‘‘๐‘ง = 2๐œ‹๐‘–
...
๐‘œ๐‘“ ๐น(๐‘ง)]๐‘ง๐‘˜
๐‘…

โˆซโˆ’๐‘… ๐น(๐‘ฅ)๐‘‘๐‘ฅ = โˆ’โˆซ๐ถ๐‘… ๐น(๐‘ง)๐‘‘๐‘ง + 2๐œ‹๐‘– โˆ‘๐‘›๐‘˜=1[๐‘…๐‘’๐‘ 
...
๐‘œ๐‘“ ๐น(๐‘ง)]๐‘ง๐‘˜ ----------(1)
๐‘…

๐‘…โ†’โˆž

๐‘…โ†’โˆž

๐œ‹

Now, lim โˆซ๐ถ ๐น(๐‘ง)๐‘‘๐‘ง = โˆซ0 ๐น(๐‘…๐‘’ ๐‘–๐œƒ )๐‘–๐‘…๐‘’ ๐‘–๐œƒ ๐‘‘๐œƒ = 0 [๐‘คโ„Ž๐‘’๐‘› ๐‘… โ†’ โˆž]
๐‘…โ†’โˆž

๐‘…

โˆž

From (1), We have โˆซโˆ’โˆž ๐น(๐‘ฅ)๐‘‘๐‘ฅ = 2๐œ‹๐‘– โˆ‘๐‘›๐‘˜=1[๐‘…๐‘’๐‘ 
...
Evaluate the Cauchy principal value of โˆซโˆ’โˆž (๐‘ฅ 2+1)(๐‘ฅ2+9) ๐‘‘๐‘ฅ
1

1

Solution
...

R

1

1

1
2
2 +9) โ€„dz
(z
+1)(z
R

โˆฎC (z2 +1)(z2 +9) ๐‘‘๐‘ง = โˆซโˆ’R (x2 +1)(x2 +9) โ€„dx + โˆซC
= I1 + I2

๐ผ1 = 2๐œ‹๐‘–
...

Now let R โ†’ ๏‚ฅ and note that on CR:
|(๐‘ง 2 + 1)(๐‘ง 2 + 9)| = |(๐‘ง 2 + 1)||(๐‘ง 2 + 9)|
โ‰ฅ ||๐‘ง|2 โˆ’ 1| ||๐‘ง|2 โˆ’ 9| = (๐‘… 2 โˆ’ 1)(๐‘… 2 โˆ’ 9)
From the ML-inequality
|๐ผ2 | = |โˆซ
๐ถ๐‘…
๐‘…

1

(๐‘ง 2

1
๐œ‹๐‘…
|๐ผ | โ†’ 0 as ๐‘… โ†’ โˆž
๐‘‘๐‘ง| โ‰ค 2
2
+ 1)(๐‘ง + 9)
(๐‘… โˆ’ 1)(๐‘… 2 โˆ’ 9) 2

๐œ‹

Thus, lim โˆซโˆ’๐‘… (๐‘ฅ 2 +1)(๐‘ฅ2 +9) ๐‘‘๐‘ฅ = 12
๐‘…โ†’โˆž

Behavior of Integral as R โ†’ ๏‚ฅ
๐‘“(๐‘ง)

Suppose ๐น(๐‘ง) = ๐‘”(๐‘ง), where the degree of ๐‘“(๐‘ง) is ๐‘› and the degree of ๐‘”(๐‘ง) is ๐‘š โ‰ฅ ๐‘› + 2
...
Evaluate the Cauchy principal value of โˆซโˆ’โˆž ๐‘ฅ 4+1 ๐‘‘๐‘ฅ
Solution
...


We also knew that

๐‘–

1

P
...
โˆซโˆ’โˆž ๐‘ฅ 4 +1 ๐‘‘๐‘ฅ = 2๐œ‹๐‘–
...
Evaluate the Cauchy principal value of โˆซ0

๐‘ฅ 2 +9

๐‘‘๐‘ฅ

Solution
...
Firstly, we check that the integrand is even, so we have
โˆž ๐‘ฅ sin ๐‘ฅ

โˆซ0

๐‘ฅ 2 +9

โˆž ๐‘ฅ sin ๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฅ 2 +9

1

๐‘‘๐‘ฅ = 2 โˆซโˆ’โˆž

๐‘ง

๐‘ง
๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง
2
๐‘ง
+9
๐‘…

โˆซ๐ถ ๐‘ง2 +9 ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง = โˆซ๐ถ

๐‘…

๐‘ฅ

+ โˆซโˆ’๐‘… ๐‘ฅ 2 +9 ๐‘’ ๐‘–๐‘ฅ ๐‘‘๐‘ฅ

๐‘ช๐‘น

๐‘ฅ๐‘’ ๐‘–๐‘ฅ

๐‘…

= 0 + โˆซโˆ’๐‘… ๐‘ฅ 2 +9 ๐‘‘๐‘ฅ
๐‘ง๐‘’ ๐‘–๐‘ง

= 2๐œ‹๐‘–
...
[(๐‘ง โˆ’ 3๐‘–) (๐‘งโˆ’3๐‘–)(๐‘ง+3๐‘–)]
๐‘ง๐‘’ ๐‘–๐‘ง

๐‘ง

โˆซ๐ถ ๐‘ง2 +9 ๐‘’ ๐‘–๐‘ง ๐‘‘๐‘ง = 2๐œ‹๐‘–
...
[
Or

โˆž ๐‘ฅ cos ๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฅ 2 +9

โˆซโˆ’โˆž

โˆž ๐‘ฅ sin ๐‘ฅ
๐‘ฅ 2 +9

3๐‘–๐‘’ โˆ’3
6๐‘–

โˆž ๐‘ฅ sin ๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฅ 2 +9

+ ๐‘– โˆซโˆ’โˆž

โˆž ๐‘ฅ cos ๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฅ 2 +9

โ‡’ โˆซโˆ’โˆž
โˆด โˆซ0

๐‘น

๐‘ง=3๐‘–

๐œ‹๐‘–

] = ๐‘’3

=

๐œ‹๐‘–
๐‘’3

โˆž ๐‘ฅ sin ๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฅ 2 +9

= 0 and โˆซโˆ’โˆž

๐‘ง=3๐‘–

=

๐œ‹
๐‘’3

๐…

๐‘‘๐‘ฅ = ๐Ÿ๐’†๐Ÿ‘
...
When

๐‘“(๐‘ง) has a pole at ๐‘ง = ๐‘, where ๐‘ is a real number, we must use the indented contour as in figure
...

If ๐ถ๐‘Ÿ is the contour defined by ๐‘ง = ๐‘ + ๐‘Ÿ๐‘’ ๐‘–๐œƒ , 0 โ‰ค ๐œƒ โ‰ค ๐œ‹ then
lim

โˆซ
๐‘Ÿโ†’0 ๐ถ๐‘Ÿ

๐‘“(๐‘ง)โ€„๐‘‘๐‘ง = ๐œ‹๐‘–
...
๐‘“(๐‘ง) and ๐‘” is analytic at ๐‘
...

we have
31 | P a g e

๐œ‹ ๐‘–๐‘Ÿ๐‘’ ๐‘–๐œƒ

โˆซ๐ถ ๐‘“(๐‘ง)โ€„๐‘‘๐‘ง = ๐‘1 โˆซ0
๐‘Ÿ

๐‘Ÿ๐‘’ ๐‘–๐œƒ

๐œ‹

โ€„๐‘‘๐œƒ + ๐‘–๐‘Ÿ โˆซ0 ๐‘”(๐‘ + ๐‘Ÿ๐‘’ ๐‘–๐œƒ ) โ€„๐‘’ ๐‘–๐œƒ ๐‘‘๐œƒ

= ๐ผ1 + ๐ผ2
First, we see
๐œ‹ ๐‘–๐‘Ÿ๐‘’ ๐‘–๐œƒ
๐‘‘๐œƒ
๐‘Ÿ๐‘’ ๐‘–๐œƒ +9

๐ผ1 = ๐‘1 โˆซ0

๐œ‹

= ๐‘1 โˆซ0 ๐‘–๐‘‘๐œƒ = ๐œ‹๐‘–๐‘1 = ๐œ‹๐‘–
...

Hence, It follows that lim |๐ผ2 | = 0 & lim๐ผ2 = 0
...
Evaluate the Cauchy principal value of โˆซโˆ’โˆž ๐‘ฅ(๐‘ฅ 2โˆ’2๐‘ฅ+2) ๐‘‘๐‘ฅ
...
We consider the contour integral โˆณ๐ถ ๐‘ง(๐‘ง2 โˆ’2๐‘ง+2)
1

Let ๐‘“(๐‘ง) = ๐‘ง(๐‘ง2 โˆ’2๐‘ง+2)
๐‘“(๐‘ง) has simple poles at ๐‘ง = 0 and ๐‘ง = 1 + ๐‘– in the upper half-plane
...
[ Res ๐‘“(๐‘ง)๐‘’ ๐‘–๐‘ง ]
๐‘…

๐‘ง=1+๐‘–

๐‘Ÿ

Taking the limits as R โ†’ ๏‚ฅ and r โ†’ 0, we have
๐‘’ ๐‘–๐‘ฅ

โˆž

P
...
โˆซโˆ’โˆž ๐‘ฅ(๐‘ฅ 2 โˆ’2๐‘ฅ+2) ๐‘‘๐‘ฅ โˆ’ ๐œ‹๐‘–
...
[ Res ๐‘“(๐‘ง)๐‘’ ๐‘–๐‘ง ]
๐‘ง=0

๐‘ง=1+๐‘–

1

Now,[Res๐‘“(๐‘ง)๐‘’ ๐‘–๐‘ง ] = 2
๐‘ง=0

1
[ Res ๐‘“(๐‘ง)๐‘’ ๐‘–๐‘ง ] = ๐‘’ โˆ’1+๐‘– (1 + ๐‘–)
๐‘ง=1+๐‘–
4
โˆž

๐‘’ ๐‘–๐‘ฅ

1

1

P
...
โˆซโˆ’โˆž ๐‘ฅ(๐‘ฅ 2 โˆ’2๐‘ฅ+2) ๐‘‘๐‘ฅ = ๐œ‹๐‘–
...
[โˆ’ 4 ๐‘’ โˆ’1+๐‘– (1 + ๐‘–)]
Using ๐‘’ โˆ’1+๐‘– = ๐‘’ โˆ’1 [cos 1 + sin 1], then
โˆž

P
...
โˆซ
โˆ’โˆž
โˆž

๐‘ฅ(๐‘ฅ 2

cos ๐‘ฅ
๐œ‹
๐‘‘๐‘ฅ = ๐‘’ โˆ’1 [cos 1 + sin 1]
โˆ’ 2๐‘ฅ + 2)
2

sin ๐‘ฅ

๐œ‹

P
...
โˆซโˆ’โˆž ๐‘ฅ(๐‘ฅ 2 โˆ’2๐‘ฅ+2) ๐‘‘๐‘ฅ = 2 [1 + ๐‘’ โˆ’1 (sin 1 โˆ’ cos 1)]
...
โˆซ๐ŸŽ
2
...

4
...

6
...


๐’…๐œฝ

; ๐’‚ > |๐’ƒ|

๐’‚+๐’ƒ ๐œ๐จ๐ฌ ๐œฝ
๐Ÿ๐…
๐’…๐œฝ
โˆซ๐ŸŽ โˆš๐Ÿโˆ’๐œ๐จ๐ฌ ๐œฝ
๐Ÿ๐…
๐’…๐œฝ
โˆซ๐ŸŽ ๐Ÿโˆ’๐Ÿ๐’‚ ๐ฌ๐ข๐ง ๐œฝ+๐’‚๐Ÿ ; ๐ŸŽ
๐Ÿ๐…
๐’…๐œฝ
โˆซ๐ŸŽ ๐Ÿ“+๐Ÿ’ ๐ฌ๐ข๐ง ๐œฝ
๐… ๐œ๐จ๐ฌ ๐Ÿ‘๐œฝ๐’…๐œฝ
โˆซ๐ŸŽ ๐Ÿ“โˆ’๐Ÿ’ ๐œ๐จ๐ฌ ๐œฝ;
๐Ÿ๐… ๐œ๐จ๐ฌ ๐Ÿ‘๐œฝ๐’…๐œฝ
โˆซ๐ŸŽ ๐Ÿ“+๐Ÿ’ ๐œ๐จ๐ฌ ๐œฝ;
๐… ๐œ๐จ๐ฌ ๐Ÿ‘๐œฝ๐’…๐œฝ
โˆซ๐ŸŽ ๐Ÿ“+๐Ÿ’ ๐œ๐จ๐ฌ ๐œฝ;

Ans:

๐…
โˆš๐’‚๐Ÿ โˆ’๐’ƒ๐Ÿ

Ans: ๐Ÿ๐…
<๐’‚<๐Ÿ

Ans:
Ans:
Ans:
Ans:
Ans:

๐Ÿ๐…
๐Ÿโˆ’๐’‚๐Ÿ
๐Ÿ๐…
๐Ÿ‘
๐…
๐Ÿ๐Ÿ’
โˆ’๐…
๐Ÿ๐Ÿ
โˆ’๐…
๐Ÿ๐Ÿ’

E-resources:
https://video
...
edu
...
php?vid=a88c1806e
https://video
...
edu
...
php?vid=60af682a7
https://video
...
edu
...
php?vid=ae7d90e1c
https://video
...
edu
...
php?vid=f671ef694
https://video
...
edu
...
php?vid=bd359002b
https://video
...
edu
...
php?vid=edca44590
https://video
...
edu
...
php?vid=808b126d6

33 | P a g e


Title: linear differential equations class notes.
Description: This is very good linear differential equations class notes.best best of best notes.