Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Integration Formula
Description: This is a better formula. Any problems are solved in this formula using

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


www
...
org

Integration Formulas
1
...
mathportal
...
Integrals of Rational Functions
Integrals involving ax + b

( ax + b )n + 1
∫ ( ax + b ) dx = a ( n + 1)
n

1

( for n ≠ −1)

1

∫ ax + b dx = a ln ax + b
∫ x ( ax + b )

n

a ( n + 1) x − b

dx =
a

x

x

2

( n + 1)( n + 2 )

( ax + b )n+1

( for n ≠ −1, n ≠ −2 )

b

∫ ax + b dx = a − a 2 ln ax + b
x

b

1

∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b
a (1 − n ) x − b

x

∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1

( for n ≠ −1, n ≠ −2 )

2

x2
1  ( ax + b )

dx = 3
− 2b ( ax + b ) + b 2 ln ax + b 
∫ ax + b

2
a 



x2

∫ ( ax + b )2
x2

∫ ( ax + b )3
x2

∫ ( ax + b ) n

1 
b2 
dx = 3  ax + b − 2b ln ax + b −

ax + b 
a 


dx =

1 
2b
b2
 ln ax + b +

ax + b 2 ( ax + b )2
a3 


dx =

3−n
2− n
1−n
2b ( a + b )
b2 ( ax + b )
1  ( ax + b )
−
+

n−3
n−2
n −1
a3 


1

1

∫ x ( ax + b ) dx = − b ln
1

ax + b
x

1

a

∫ x 2 ( ax + b ) dx = − bx + b2 ln
1

∫ x 2 ( ax + b )2

ax + b
x


1
1
2
ax + b
dx = − a  2
+ 2 − 3 ln
 b ( a + xb ) ab x b
x


Integrals involving ax2 + bx + c
1

1

x

∫ x 2 + a 2 dx = a arctg a

a−x
1
 2a ln a + x

∫ x2 − a 2 dx =  1 x − a
 ln
 2a x + a

1






for x < a
for x > a











( for n ≠ 1, 2,3)

www
...
org

2
2ax + b

arctan

2
4ac − b 2
 4ac − b

1
2
2ax + b − b 2 − 4 ac

dx = 
ln
∫ ax 2 + bx + c
 b 2 − 4ac 2 ax + b + b 2 − 4ac

− 2
 2ax + b

x

1

∫ ax 2 + bx + c dx = 2a ln ax

2

+ bx + c −

for 4ac − b 2 > 0
for 4ac − b 2 < 0
for 4ac − b 2 = 0

b
dx
∫ ax 2 + bx + c
2a

m
2an − bm
2ax + b
2
arctan
for 4ac − b 2 > 0
 ln ax + bx + c +
2
2
2a
a 4ac − b
4ac − b

m
mx + n
2an − bm
2ax + b

2
2
∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0

m
2an − bm
 ln ax 2 + bx + c −
for 4ac − b 2 = 0
a ( 2 ax + b )
 2a




1

( ax

∫x

2

+ bx + c

)

n

1

( ax

2

+ bx + c

)

dx =

2ax + b

( n − 1) ( 4ac − b2 )( ax 2 + bx + c )

dx =

n−1

+

( 2 n − 3 ) 2a
1
dx
2 ∫
( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1

1
x2
b
1
ln 2
− ∫ 2
dx
2c ax + bx + c 2c ax + bx + c

3
...
mathportal
...
Integrals of Logarithmic Functions

∫ ln cxdx = x ln cx − x
b

∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b)
2

2

∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x
n
n
n −1
∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx
i

∞ ln x
( )
dx
= ln ln x + ln x + ∑
∫ ln x
n =2 i ⋅ i !

dx

∫ ( ln x )n

=−

x

( n − 1)( ln x )

n −1

+

1
dx
n − 1 ∫ ( ln x )n −1

 ln x
1
x m ln xdx = x m +1 


 m + 1 ( m + 1) 2


∫ x ( ln x )
m



( ln x )n
x

n

dx =

dx =

x m+1 ( ln x )

n

m +1



( ln x )n+1

)

( for m ≠ 1)

n
n −1
m
∫ x ( ln x ) dx
m +1

2

ln x n
ln x n
( for n ≠ 0 )
∫ x dx = 2n
ln x
ln x
1
∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1



( ln x )n
xm

( for m ≠ 1)

( ln x )n
( ln x )n−1
n
dx = −
+
dx
( m − 1) x m−1 m − 1 ∫ x m

dx

∫ x ln x = ln ln x


dx

∫ xn ln x = ln ln x + ∑ ( −1)
i =1
dx

∫ x ( ln x )n
∫ ln ( x

2

=−

i

( n − 1)i ( ln x )i
i ⋅ i!

1

( for n ≠ 1)

( n − 1)( ln x )n−1

)

(

)

+ a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1
x

∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) )
x

( for m ≠ 1)

( for n ≠ 1)

n +1

(






( for n ≠ 1)

∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) )

x
a

( for m ≠ 1)

www
...
org
5
...
Functions

∫ sin xdx = − cos x
∫ cos xdx = − sin x

cos x

x 1
− sin 2 x
2 4
x 1
2
∫ cos xdx = 2 + 4 sin 2 x
1
3
3
∫ sin xdx = 3 cos x − cos x
1 3
3
∫ cos xdx = sin x − 3 sin x

∫ sin

2

xdx =

dx

cos 2 x
x
∫ sin x dx = ln tan 2 + cos x

∫ cot

2

xdx = − cot x − x

dx

∫ sin x cos x = ln tan x
dx

x

1

π

∫ sin 2 x cos x = − sin x + ln tan  2 + 4 


dx

1

x

x

∫ sin x cos2 x = cos x + ln tan 2

x

∫ sin 2 x cos2 x = tan x − cot x

∫ sin x xdx = ln tan 2
dx

1

∫ sin 2 x dx = − sin x

dx

π

∫ cos x xdx = ln tan  2 + 4 


dx
∫ sin 2 x xdx = − cot x
dx
∫ cos2 x xdx = tan x

sin( m + n) x sin( m − n) x
+
2( m − n)

∫sin mxsin nxdx = − 2( m+ n)

cos ( m + n) x cos ( m − n) x

2( m − n)

∫sin mxcos nxdx = − 2( m + n)

sin ( m + n) x sin ( m − n) x
+
2( m − n)

dx
cos x
1
x
∫ sin 3 x = − 2sin 2 x + 2 ln tan 2

∫ cos mxcos nxdx = 2( m + n)

dx
sin x
1
x π
∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4 



n
∫ sin x cos xdx = −

1
∫ sin x cos xdx = − 4 cos 2 x
1 3
2
∫ sin x cos xdx = 3 sin x
1
2
3
∫ sin x cos xdx = − 3 cos x
x 1
2
2
∫ sin x cos xdx = 8 − 32 sin 4 x

n
∫ sin x cos xdx =

∫ tan xdx = − ln cos x
sin x
1
dx =
2
cos x
x

∫ cos

sin 2 x
x π 
∫ cos x dx = ln tan  2 + 4  − sin x



∫ tan xdx = tan x − x
∫ cot xdx = ln sin x
2

cos n +1 x
n +1

sin n +1 x
n +1

∫ arcsin xdx = x arcsin x +

1 − x2

∫ arccos xdx = x arccos x −

1 − x2
1

∫ arctan xdx = x arctan x − 2 ln ( x
1

2

∫ arc cot xdx = x arc cot x + 2 ln ( x

2

)

+1

)

+1

m2 ≠ n2
m2 ≠ n2
m2 ≠ n2


Title: Integration Formula
Description: This is a better formula. Any problems are solved in this formula using