Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

Phylogenetic Trees£1.50

Title: Homeostasis: the effect of exercise intensity
Description: Homeostasis: the effect of exercise intensity This is an A+ assesment I scored really high for it IB Biology Internal Assessment

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


 
 
 

 

 

           

IB  Biology  Internal  
Assessment  
Homeostasis:  the  effect  of  exercise  intensity  

           
 

           

Research  Question:    
How  does  physical  exercise  at  intensities  of  120,  140,  160,  180  punches  per  minute  (ppm)  
affect  homeostatic  controls  with  regard  to  rate  of  CO2  expulsion  (s-­‐1),  blood  pressure  
(mmHg),  vasodilation,  sweat  and  breathing  rate?    

Aim:  
To  investigate  the  effect  of  physical  activities  at  different  intensities  (ppm)  on  homeostatic  
controls  in  maintaining  the  rate  of  CO2  expulsion  (s-­‐1),  blood  pressure  (mmHg),  vasodilation,  
sweat  and  breathing  rate  within  certain  limits
...
 In  effect,  
maintaining  an  internal  environment  in  which  controlled  variables  are  kept  within  certain  
limits  is  known  as  homeostasis
...
 180)
...
   Physical  activity  is  dependent  
upon  the  use  of  skeletal  muscle  for  movement  and  exercise
...
 In  cellular  respiration,  oxygen  (O2)  is  the  reactant  and  carbon  dioxide  
(CO2)  is  the  product
...
 To  ensure  the  transport  of  O2  to  cells,  and  ultimately,  to  remove  CO2  from  the  
body,  certain  mechanisms  are  undertaken  by  the  body
...
 632)
...
 632)
...
 This  
factor  can  be  qualitatively  observed  by  looking  at  the  breathing  rate
...
 
With  the  increase  in  respiratory  gases  moving  into  and  out  of  cells,  blood  which  transports  
these  must  as  well  circulate  faster  within  the  body
...
 
The  signal  is  then  reached  to  the  sinoatrial  node  (SA  node)  which  consequently  sends  signals  
to  the  atria  in  order  to  increase  the  rate  of  their  contraction
...
 
Overall,  these  processes  result  in  an  increased  heart  rate  and  hence  an  increased  flow  of  
blood  through  the  arteries  (Damon,  2007,  p
...
 Due  to  this  increase  in  flow,  high  
pressures  of  blood  enter  the  arteries  ready  to  carry  the  respiratory  gases  at  a  faster  speed
...
   
In  addition,  due  to  cellular  respiration,  heat  is  also  a  product  and  therefore,  the  body  
temperature  begins  to  rise  during  exercise
...
 181)
...
 

Hypothesis:  
As  explained  earlier,  as  the  intensity  of  exercise  increases,  there  is  a  higher  demand  for  the  
supply  of  O2  to  the  cells  and  subsequently  a  higher  need  to  expel  CO2  from  the  body
...
 The  primary  two  functions  that  do  so  are  the  buffer  systems  and  the  increase  in  
the  ventilation  rate
...
 This  increase  in  blood  flow  and  pressure  in  the  
arteries  is  blood  pressure;  hence  an  increase  in  intensity  would  result  in  an  increase  in  blood  
pressure
...
 Also,  due  to  an  increase  in  ventilation  rate,  the  
breathing  rate  is  also  expected  to  increase
...
     

 
Variables:  
Independent:    


Physical  exercise  at  intensities  of  120,  140,  160,  180  punches  per  minute  (ppm):  

Intensity  variations  (ppm)  will  be  the  basis  of  the  experiment  that  should  cause  a  change  in  
the  rate  of  CO2  expulsion  (s-­‐1)  and  blood  pressure  (mmHg)
...
 With  the  increase  of  
intensities  it  hypothesised  that  there  will  also  be  an  increase  in  the  rate  of  CO2  expulsion  
and  blood  pressure
...
   
Dependent:  


Carbon  Dioxide  (CO2)  expulsion  (s)    

As  a  result  of  increased  intensities,  there  will  be  an  increased  rate  of  CO2  expulsion  as  was  
explained  earlier
...
 First,  it  should  be  noted  that  the  
rate  of  CO2  expulsion  will  be  measured  qualitatively  by  observing  the  change  in  colour  of  a  
Page  3  of  28  
 

           

solution  which  is  caused  by  the  change  in  pH
...
e
...
 
The  time  will  then  be  converted  into  a  rate
...
 With  the  increase  in  intensity,  higher  pressures  of  blood  will  be  circulating  the  
body
...
 These  two  variables  will  be  
measured  using  a  blood  pressure  monitor
...
 In  order  to  release  
some  of  the  inner  temperature  from  the  body,  blood  vessels  dilate  and  are  therefore  closer  
to  the  outer  environment
...
 This  is  evident  when  the  face  of  the  
subject  is  slightly  red
...
 


Sweat:  

Another  way  of  maintaining  a  stable  internal  temperature  is  by  the  means  of  sweating
...
 This  is  will  also  be  qualitatively  measured
...
 This  is  will  be  qualitatively  measured  by  looking  at  the  level  of  
panting  and  breathing  rate
...
5˚C):    
The  temperature  of  the  solution  and  the  outer  environment  must  remain  constant  in  
order  to  obtain  fair  and  consistent  results
...
5˚C)  since  temperatures  affect  molecular  collisions  and  therefore  affect  the  rate  
of  reaction
...
   



Volume  of  solution  (water)  and  volume  of  indicator:  
The  volume  of  water  and  indicator  must  remain  constant  throughout  the  different  
trials  and  intensities  to  obtain  consistent  results
...
 A  
difference  in  the  amount  of  water  will  also  lead  to  different  amounts  of  hydrogen  
carbonates  being  formed  in  the  solution,  hence  affecting  the  pH
...
     



Decrease  in  pH  
The  pH  of  the  solution  will  be  measured  using  a  pH  meter
...
e
...
   Therefore  it  is  important  to  stop  the  time  after  
this  change  to  obtain  results  that  are  fair  and  consistent  throughout  the  experiment
...
 This  is  essential  to  obtaining  accurate  
qualitative  data
...
g
...
 Also  because  having  a  
different  BMI  may  cause  different  responses
...
 Therefore  in  order  to  maintain  
consistent  results  throughout  the  experiment,  the  subject  cannot  be  changed  during  
Page  5  of  28  

 

           

the  experiment
...
 Another  important  
factor  that  needs  to  be  controlled  is  the  position  of  the  subject  when  taking  blood  
pressure
...
 Also,  the  same  blood  pressure  monitor  must  be  used  to  
obtain  consistent  results
...
 
Control:    
The  control  will  involve  setting  up  a  conical  flask  with  water  containing  five  drops  of  
universal  indicator
...
 If  there  
is  not,  then  it  can  be  said  that  the  CO2  reaction  with  water  to  form  carbonic  acid  is  the  cause  
of  the  colour  change
...
0  L  water  



striking  pad    



stopwatch  



pH  meter  



0-­‐100˚C  Thermometer  



Microlife  blood  pressure  monitor  

Safety  


Ensure  that  the  subject  is  able  to  conduct  the  exercise
...
 

 
Page  6  of  28  
 

           

Method  for  Data  Collection:  
Control  
 



Set  up  the  control  by  measuring  100ml  of  water  using  the  measuring  cylinder
...
   



Add  5  drops  of  universal  indicator  (the  solution  should  be  greenish  in  colour)  



Use  the  pH  meter  to  test  the  pH  of  the  solution  (should  be  neutral,  i
...
 close  to  7)
...
 The  colour  of  the  solution  
should  not  change
...
Try  to  have  an  assistant  to  help  in  data  collection
...
 Ensure  that  the  
subject  is  sitting  down,  does  not  move  or  speak,  and  is  calm  during  the  test
...
 
Table  1:  The  effect  of  physical  exercise  at  different  intensities  (ppm)  on  systolic  and  
diastolic  blood  pressures  (mmHg)  
 
Intensity  of  Exercise  (ppm)  
 

Blood  Pressure  (mmHg)  ±  1  
Trial  2  

Trial  1  

Trial  3  

SBP  

DBP  

SBP  

DBP  

SBP  

DBP  

Resting  
120  

 
 

 
 

 
 

 
 

 
 

 
 

140  

 

 

 

 

 

 

160  

 

 

 

 

 

 

180  

 

 

 

 

 

 

 
2
...
 Once  again,  pour  it  into  the  conical  flask  and  add  5  drops  of  the  universal  
indicator
...
 Use  the  0-­‐100˚C  

Page  7  of  28  
 

           

thermometer  to  ensure  that  the  temperature  is  consistent  throughout  the  
experiment
...
   
3
...
 Also,  be  
ready  to  observe  the  levels  of  sweat,  vasodilation  and  breathing  rate
...
   
Diagram  1:  Observations  in  relation  to  the  rate  of  colour  change  of  the  solution  from  
green  to  yellow  at  different  intensities  of  exercise  (ppm)
...
 

 
 
 
 
 
 

 Key  1:  
No  change  in  the  
colour  of  the  solufon  

Key  2:  
 Rate  of  colour  change  
is  relafvely  fast  

Key  3:  
 Rate  of  colour  change  
is  slighfng  faster  than  
key  2
...
 
 

Assign  a  key  from  1-­‐5  to  represent  the  level  of  sweat  at  different  intensifes
...
 
 

Assign  a  key  from  1-­‐5  to  represent  the  breathing  rate  at  different  intensifes
...
 

 Diagram  4:  Observations  in  relation  to  the  level  of  vasodilation  at  different  intensities  of  
exercise  (ppm)
...
 

 
Key  1:  
No  sign  of  vasodilafon  

 

Key  2:  
 Opaque  red  areas  
becoming  slightly  visible  

 
 
 

 

Key  4:  
Vasodilafon  is  clearly  
higher  with  an  increase  
in  redness  of  cheeks
...
   

 
 
Quantitatively,  be  ready  to  measure  the  time  it  takes  for  the  pH  of  the  solution  to  
drop  by  one  unit,  immediately  stop  timing  after  so
...
Get  ready  to  time  using  the  stopwatch
...
 Start  timing  as  soon  as  the  
breathing  begins
...
 Record  the  quantitative  
data  in  table  2
...
     
Table  2:  The  effect  of  physical  exercise  at  different  intensities  (ppm)  on  time  taken  for  pH  
to  decrease  by  one  unit  (s)  as  a  result  of  CO2  expulsion  into  the  flask  
 

Time  (s)  ±  0
...
Repeat  steps  1-­‐4  for  the  next  two  trials;  record  the  data
...
Obtain  another  conical  flask  and  use  the  measuring  cylinder  to  measure  100ml  of  
water
...
 Make  sure  the  pH  meter  is  also  in  the  solution
...
Proceed  to  collect  data  for  the  intensity  at  120  punches  per  minute  (ppm)
...
 Let  one  
hold  the  striking  and  another  responsible  for  timing  and  counting  the  punches
...
 The  assistant  timing  and  
counting  can  help  maintain  the  consistency  by  informing  the  subject  when  to  speed  
up  or  to  slow  down
...
Start  punching  and  importantly,  timing  for  a  minute
...
 Observe  the  rate  of  colour  change  (qualitative)  and  
assign  a  key  from  diagram  1
...
   
9
...
e
...
Proceed  to  use  the  blood  pressure  monitor  to  measure  the  blood  pressure  of  the  
subject
...
 Compare  these  results  with  the  following  
reference  chart  showing  the  ranges  for  blood  pressure:  
   
 
 
 
 
 
 

Reference:  (Modric,  2009)  

 
 
11
...
 This  should  be  consistent  throughout  the  experiment
...
Repeat  steps  6-­‐11  for  the  next  two  trials
...
Repeat  steps6-­‐11  for  the  remaining  intensities  of  140,  160  and  180  (ppm),  each  for  
three  trials
...
   
 
 
 
 
 
 
 

Page  11  of  28  
 

           

Method  for  Data  Processing  
When  processing  your  data,  you  will  need  to  find  the  averages  of  the  following:  


The  time  taken  for  the  pH  of  the  solution  to  decrease  by  one  unit  in  seconds
...
   

Also,  the  time  taken  for  the  pH  to  decrease  by  one  unit  should  be  converted  into  rate  (s-­‐1),  
and  this  is  done  by  dividing  1  by  the  average  time  taken
...
 

In  addition,  the  percentage  uncertainty  should  be  calculated  to  account  for  possible  
uncertainties  that  may  have  risen
...
 Note  that  the  apparatus  used  for  the  calculations  regarding  CO2  expulsion  (s-­‐
1

)  involve  the  stop  watch  and  the  measuring  cylinder
...
 As  for  the  blood  pressure,  the  only  uncertainty  is  that  of  the  monitoring  device
...
   To  do  this,  you  divide  the  
uncertainty  of  certain  equipment  used  that  may  have  affected  your  results  by  the  data  you  
!"#$%&'("&)

have  collected  and  then  times  it  by  100  ( 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆  𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚 = !"#"  !"#$!%"%  ×100)
...
 This  can  
then  be  converted  to  a  total  absolute  uncertainty  by  multiplying  the  rate  of  CO2  or  blood  
pressure  by  the  total  percentage  uncertainty
...
   In  these  graphs,  the  independent  should  be  the  x-­‐axis  (the  different  intensities)  
while  the  dependent  should  be  the  y-­‐axis  (the  blood  pressure  or  rate  of  CO2  expulsion)
...
 On  the  other  hand,  the  diastolic  blood  pressure  
(DBP)  is  only  slightly  changed  –  sometimes  values  increase  and  sometimes  decrease
...
   
Page  14  of  28  
 

           
Table  2:  The  effect  of  physical  exercise  at  different  intensities  (ppm)  on  time  taken  for  pH  to  
decrease  by  one  unit  (s)  as  a  result  of  CO2  expulsion  into  the  flask  

 
Intensity  of  Exercise  (ppm)  

Trial  1  

Time  (s)  ±  0
...
15  

25
...
25  

120  

20
...
12  

20
...
68  

19
...
45  

160  

17
...
21  

17
...
12  

14
...
17  

Evidently,  the  time  taken  for  the  pH  to  drop  by  one  unit  decreases  as  the  intensity  of  the  
exercise  increases
...
 
 

 
 

ResNng  Phase:  
 Rate  of  colour  change  
is  relafvely  fast  

120  (ppm):  
 Rate  of  colour  change  
is  slighfng  faster  than  
key  2
...
   
Figure  1:  The  colour  of  the  solution  prior  to  the  CO2  exhalation  into  the  flask  (green):  

 
 
 
 
Using  the  pH  chart,  the  pH  of  this  solution  is  7
...
 
 Diagram  2:  Observations  in  relation  to  the  level  of  sweat  at  different  intensities  of  exercise  (ppm)
...
 The  sweat  was  observed  to  be  on  the  neck,  face,  and  other  areas,  
suggesting  that  with  increased  intensity,  the  level  of  sweat  increases
...
 

 
 
 

ResXng  Phase:  
Normal  breathing  rate  

120  (ppm):  
 Breathing  rate  
increased  slightly  

140  (ppm):  
Breathing  rate  faster  
than  the  previous    

 

 
 
 

160  (ppm):  
Breathing  rate  is  
evidently  faster  with  an  
increase  in  panfng  

180  (ppm):  
Fastest  breathing  rate,  
panfng  faster  than  
previous  intensifes
...
 
Page  16  of  28  
 

           
 Diagram  4:  Observations  in  relation  to  the  level  of  vasodilation  at  different  intensities  of  exercise  
(ppm)
...
 

180  (ppm):  
The  highest  visibility  of  
vasodilafon  and  clearly  
more  than  previous  
intensifes
...
   
The  uncertainties  of  this  experiment  are  shown  in  the  table  below:  
Apparatus  

Uncertainty  

Stop  watch  

±  0
...
   

 
 
 
 
 
 
 
 
 
 
 
Page  17  of  28  
 

           

Data  Processing  
The  following  data  processing  will  involve  averaging  data
...
e
...
 

Table  3:  The  average  of  systolic  and  diastolic  blood  pressures  (mmHg)  at  different  intensities  
(ppm)    

 

Blood  Pressure  (mmHg)  ±  1  
Trial  1  
SBP  
DBP  

Trial  2  
SBP  
DBP  

Trial  3  
SBP  
DBP  

Average  
SBP  
DBP  

129  

79  

131  

68  

126  

71  

129  

73  

120  

135  

81  

131  

69  

123  

72  

130  

74  

140  

139  

73  

137  

77  

140  

67  

139  

72  

160  

149  

78  

152  

73  

147  

74  

149  

75  

180  

164  

69  

167  

72  

172  

68  

168  

70  

Intensity  of  
Exercise  (ppm)  
Resting  

Calculating  an  average  of  three  trails  helps  provide  fair  results  and  therefore  will  be  used  for  
the  rest  of  the  experiment
...
 
Table  4:  Averages  of  the  time  taken  for  pH  to  decrease  by  one  unit  (s)  and  the  rate  of  CO2  
expulsion  (s-­‐1)
...
01  

Intensity  of  
Exercise  (ppm)  

Trial  1  

Trial  2  

Trial  3  

Average  

Rate  of  CO2  
expulsion  (s-­‐1)  

Resting  

23
...
66  

25
...
69  

0
...
82  

19
...
79  

20
...
04941  

140  

18
...
07  

18
...
73  

0
...
44  

17
...
11  

17
...
05797  

180  
16
...
78  
16
...
69  
0
...
 
These  were  rounded  to  four  significant  figures
...
   

Page  18  of  28  
 

           

Using  the  uncertainties  of  the  apparatuses  (stop  watch  and  measuring  cylinder)  the  
percentage  uncertainty  can  be  found
...
01  and  the  
uncertainty  of  the  measuring  cylinder  is  ±1
...
 
!
...
 Note  the  use  of  
100ml  because  this  amount  was  used  for  all  trials  and  intensities
...
01  

Percentage  
uncertainty  of  
Stop  watch  (%)  

Percentage  uncertainty  of  
Measuring  cylinder  (%)  

Resting  

24
...
04050  

1  

120  

20
...
04941  

1  

140  

18
...
05339  

1  

160  

17
...
05797  

1  

180  

15
...
06373  

1  

 
This  table  consists  of  the  percentage  uncertainties  that  may  have  evolved  during  the  
experiment
...
   
The  total  percentage  uncertainty  will  now  be  calculated  by  adding  the  percentage  
uncertainty  of  the  stop  watch  and  the  measuring  cylinder
...
   
 
Page  19  of  28  
 

           
Table  6:  Total  percentage  uncertainty  and  total  absolute  uncertainty  of  the  time  taken  for  pH  to  
decrease  by  one  unit  (s)  as  a  result  of  CO2  expulsion  into  the  flask
...
04050  

0
...
041  

0
...
041%  =  0
...
04941  

0
...
049  

0
...
049%  =  0
...
05339  

0
...
053  

0
...
053%  =  0
...
05797  

0
...
058  

0
...
058%  =  0
...
06373×  1
...
0006779  
 
The  absolute  uncertainty  accounts  for  all  possible  errors
...
06373  

0
...
064  

the  same  unit  as  the  rate  of  CO2  expulsion  (s-­‐1)
...
04050  ±  0
...
04941  ±  0
...
05339  ±  0
...
05797  ±  0
...
06373  ±  0
...
 Note:  the  uncertainty  of  the  
blood  pressure  monitor  is  ±  1  mmHg
...
 Absolute  uncertainty  will  

be  calculated  by  multiplying  the  blood  pressure  by  the  percentage  uncertainty
...
7752  

1
...
7692  

1
...
7194  

1
...
6711  

1
...
5952  

1
...
 
Noticeable  is  the  fact  that  the  absolute  uncertainty  is  one  which  is  the  same  as  the  
uncertainty  of  the  blood  pressure  monitor
...
 The  x-­‐axis  will  be  
independent  variable  (intensity)  while  the  y-­‐axis  will  be  the  dependent  variable
...
   
From  the  graph  it  can  be  seen  that  as  the  intensity  of  exercise  increase,  the  rate  of  CO2  
expulsion  also  increases
...
 Also,  error  bars  have  been  
included  to  account  for  the  total  absolute  uncertainty  values  (table  7)
...
 
 

Page  22  of  28  
 

           
Graph  2:  The  effect  of  physical  exercise  at  different  intensities  (ppm)  on  the  systolic  and  diastolic  
blood  pressure  (mmHg)  

 
Evidently  from  the  graph  it  can  be  seen  that  the  systolic  blood  pressure  increases  as  
intensity  of  exercise  increases
...
 This  suggests  that  diastolic  blood  
pressure  does  not  follow  trend  of  the  systolic  blood  pressure
...
   For  
example,  the  fact  that  as  intensity  of  exercise  increases,  the  rate  of  carbon  dioxide  
exhalation  increases  supports  the  hypothesis
...
 This  is  evident  when  comparing  the  
intensities  of  160  (ppm)  and  180  (ppm),  the  former  with  a  rate  of  CO2  expulsion  of  0
...
06373  (s-­‐1)
...
 Moreover,  the  hypothesis  that  the  
systolic  blood  pressure  increases  as  a  result  of  increased  intensity  was  evidently  true  
throughout  the  experiment
...
 Again,  from  these  values  it  can  be  seen  
that  with  an  increased  intensity  there  will  be  an  increase  in  the  systolic  blood  pressure
...
 For  example,  at  120  (ppm)  the  diastolic  blood  pressure  was  74  (mmHg),  but  at  
the  intensity  of  140  (ppm),  the  blood  pressure  in  fact  decreased  to  72  (mmHg)
...
 However  with  the  increase  of  exercise  intensities,  these  factors  also  
increase  and  the  body  then  responds  by  dilating  the  arteries
...
 Therefore,  the  hypothesis  was  
only  partly  supported  as  it  was  earlier  hypothesised  that  the  diastolic  blood  pressure  would  
increase,  but  this  was  not  the  case
...
 With  an  increase  in  exercise,  these  measurements  of  homeostasis  
increased
...
 Therefore,  though  the  experimental  
results  do  not  completely  support  the  hypothesis,  specifically  the  hypothesis  regarding  an  
Page  24  of  28  
 

           

increase  in  diastolic  blood  pressure,  they  do  support  the  variables  –  namely,  the  increase  in  
the  rate  of  CO2  expulsion,  systolic  blood  pressure,  sweat,  vasodilation  and  breathing  rate
...
 The  first  limitation  is  in  relation  to  the  breathing  rate/intensity  when  exhaling  into  
the  straw  and  hence  into  the  flask
...
 Also,  the  intensity  of  breathing  
into  the  straw  may  have  also  affected  the  results  obtained
...
 This  would  have  affected  the  time  required  to  drop  the  
pH  by  one  unit  and  hence  the  results  collected  for  the  rate  of  CO2  expulsion
...
 After  so,  the  change  in  pH  can  be  examined  rather  than  it  being  
controlled
...
   
Another  source  if  error  is  the  possibility  that  the  CO2  exhaled  into  the  flask  might  not  have  
completely  reacted  in  water  to  produce  hydrogen  carbonate
...
 This  bubbling  might  have  
contained  undissolved  carbon  dioxide  gases,  hence  affecting  the  pH  of  the  solution
...
 To  overcome  this  source  of  error,  other  direct  mechanisms  of  the  
homeostatic  controls  can  be  measured  such  as  breathing  rate,  heart  rate,  and  others
...
   
Another  limitation  and  a  source  of  error  is  the  fact  that  the  blood  pressure  is  not  
immediately  taken,  rather  it  is  taken  after  exhaling  into  the  conical  flask
...
 This  systematic  error  is  significant  as  it  may  lower  the  blood  pressure  as  a  result  of  
delayed  measurement  of  the  blood  pressure
...
 To  overcome  this  
problem,  an  instantaneous  blood  pressure  monitor  can  be  used  immediately  after  the  
subject  completes  the  exercise
...
 Another  way  to  overcome  the  limitations  
relating  to  measuring  blood  pressure  is  to  measure  direct  homeostatic  controls
...
 Therefore  direct  measurements  of  homeostasis  may  be  utilised,  as  explained  
earlier,  for  example,  measuring  heart  rate,  breathing  rate,  among  others
...
   
A  third  source  of  error  relates  to  measuring  the  punches  per  minute
...
 The  subject  might  punch  at  a  fast  rate  at  
the  beginning  but  then  slow  down  later,  and  this  will  affect  the  levels  of  CO2  expulsion  as  
well  as  blood  pressure
...
 For  example,  using  a  treadmill  to  
run  certain  distances  at  a  certain  speeds
...
 Therefore,  it  minimises  
the  amount  of  errors  and  allows  for  the  collection  of  more  accurate  quantitative  data  such  
as  heart  rate  if  the  treadmill  is  equipped  with  a  heart  rate  sensor
...
 Stopwatches  depend  on  human  reaction  times;  therefore,  the  
assistant  stopping  the  time  might  not  stop  as  soon  as  the  pH  drops  by  one  unit,  especially  
because  the  times  obtained  at  different  intensities  where  really  close  with  one  to  four  
seconds  difference  between  each  other
...
24  (s)  while  for  the  140  (ppm)  intensity,  the  time  was  18
...
 
Evidently,  there  is  a  short  time  frame  between  these  two  intensities,  and  therefore  the  
longer  an  assistant  takes  to  stop  the  time,  the  higher  the  effect  on  the  accuracy  of  the  
results
...
 Another  effective  again  involves  the  use  of  treadmills
...
 This  would  
therefore  minimise  the  errors  involved  with  stopwatches
...
 The  measuring  
cylinder  used  had  an  uncertainty  of  ±1  mL  which  may  have  affected  the  volume  of  the  water  
poured  into  the  conical  flask
...
 This  source  of  error  (random  error)  however  is  not  as  
significant  as  the  ones  discussed  earlier  because  it  is  not  directly  related  to  the  
measurements  regarding  the  rate  of  CO2  expulsion
...
 The  
uncertainties  of  these  are  not  as  high  as  the  measuring  cylinder  and  therefore,  they  are  
more  reliable  when  it  comes  to  controlling  the  volume  of  water  in  the  flask
...
 
Generally,  to  obtain  fair  and  consistence  results,  an  addition  of  the  number  of  trials  is  
helpful
...
 The  repeated  trials  would  minimise  the  random  errors  
that  may  have  occurred  in  the  experiment
...
 But,  
the  hypothesis  is  not  supported  with  regard  to  diastolic  blood  pressure  because  it  was  not  
greatly  affected  by  exercise  at  different  intensities
...
   
 
 

Page  27  of  28  
 

           

Bibliography  
 
Damon,  A
...
 Higher  Level  Biology  for  the  IB  Diploma
...
 
Lunardoni,  C
...
 Why  Does  Diastolic  Blood  Pressure  Stay  the  Same  During  Exercise?  
Retrieved  April  6,  2012,  from  Livestrong:  http://www
...
com/article/79009-­‐diastolic-­‐
blood-­‐pressure-­‐stay-­‐same/  
Modric,  J
...
 What  Is  Normal  Blood  Pressure  Range?  Blood  Pressure  Chart
...
healthhype
...
html  
 

Page  28  of  28  
 


Title: Homeostasis: the effect of exercise intensity
Description: Homeostasis: the effect of exercise intensity This is an A+ assesment I scored really high for it IB Biology Internal Assessment