Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Physics A Final Study Guide
Description: This study guide contains all of the material from Physics 1A including terms, concepts, equations and explanations. (helped me get a 99 on the final)

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Physics  1A  Final  Study  Guide    
(mathematical  and  visual  examples  are  in  the  documents  attached)  

Introduction  
A
...
deals  with  the  behavior  and  structure  of  matter  and  energy    
B
...
Model:  useful  idea  to  explain  what  we  observe  
b
...
Law:  concise,  general  statement  about  how  nature  behaves  
d
...
If  not  specified,  it  is  assumed  to  be  1  or  a  few  units  in  the  last  digit  specified  
e
...
Adding  or  subtracting:  round  to  the  least  significant  place  
ii
...
Leading  zeroes  don’t  count    
iv
...
Scientific  notation:  write  in  powers  of  ten  
i
...

iii
...

v
...

vii
...


Tetra  T  1012  
Giga  G  109  
Mega  M  106  
Kilo  K  103  
Centi  c  10-­‐2  
Milli  m  10-­‐3  
Micro  u  10-­‐6  
Nano  n  10-­‐9  

g
...
Kinematics  and  Dynamics    
a
...
Dynamics:  forces  and  why  objects  move  the  way  they  do    
B
...
Space  and  time  
b
...
Example:  
C
...
Scalars:  completely  specified  by  numerical  value  (magnitude)  
b
...
Tensors:  type  of  vector  
d
...


E
...

G
...

I
...
Velocity  and  displacement  are  vectors  because  in  order  to  find  them,  we  must  
take  direction  into  account    
Reference  Frame:  freedom  to  specify  your  coordinate  system  
a
...
The  laws  of  mechanics  cannot  distinguish  between  constant  velocity  reference  
frames  (standing  on  a  train  platform  watching  it  go  by  vs
...
Average  velocity:  vector,  can  be  calculated  using  displacement  and  time  elapsed  
b
...
Velocity  quantifies  how  position  changes  over  time    
d
...
 t,  essentially  the  
secant  line)  
e
...
V!=dx!/dt  
g
...
I  
i
...
Average  acceleration:  (vf-­‐vi)/(tf-­‐ti)  
k
...
Velocity  changes  linearly  over  time  
b
...
v(t)=v0+at  
b
...
v2=vo2+2a(xf-­‐xi)  
Application:  Free  Fall    
a
...
Mass  does  not  matter  and  gravity  is  constant    
Vectors:  Example  3    

Trigonometry  Review    
1
...
sin=(opposite/hypotenuse)  
3
...
tan=(opposite/adjacent)  
5
...
 θ=cos-­‐1(adjacent/hypotenuse)  
7
...
given  55m/s  at  angle  of  53  degrees  
a
...
velocity  in  the  y  direction=  55sin(53)  
Projectile  Motion  

1
...
define  your  coordinate  system  
3
...
vx=vox  
b
...
y  direction  equations  
a
...
y(t)=yo+voyt-­‐(1/2)gt2  
Dynamics:  why  things  move  the  way  they  do    
A
...
Is  a  vector  quanitity  because  it  has  a  magnitude  and  a  direction    
b
...
Newton’s  Laws    
a
...
Inertia:  tendency  of  an  object  to  maintain  its  state    
b
...
Direction  of  acceleration=  direction  of  force    
ii
...
Mass  becomes  an  objects  resistance  to  accelerate    
c
...
Weight  and  the  Force  of  Gravity    
a
...
Fg=mg  
c
...
Gravity:  long  range  force,  objects  do  not  have  to  be  physically  touching  the  earth’s  
surface  to  experience  an  interaction    
D
...
Contact  forces  (perpendicular  to  the  surface  of  contact)  
b
...
Types  of  Forces  
a
...
Friction:  opposing  motion  between  2  surfaces  in  contact    
c
...
Strategy  
a
...
Define  your  system  
c
...
Choose  a  coordinate  system    
e
...
Apply  Newton’s  second  law    
g
...
Summary  of  Newton’s  Laws    
a
...
Fnet=ma  
c
...
Larger  mass=more  inertia    
B
...
Gravitational:  mg,  acts  downwards    
b
...
Normal:  perpendicular  to  surface,  FN  or  N  
d
...
Friction  
a
...
Static  friction:  keeps  objects  stationary  when  sliding  would  otherwise  occur    
c
...
Force  is  always  in  the  direction  that  opposes  motion  or  potential  motion    
e
...
Is  NOT  a  vector  equation  
D
...
Static  friction  varies  in  magnitude  so  the  object  stays  stationary  
b
...
For  most  cases  uk  will  be  less  than  us  
d
...
Intro  
a
...
Velocity  is  always  tangential  to  the  circle    
c
...
The  change  in  velocity  will  always  point  towards  the  center  of  the  circle    
B
...
Objects  are  kept  on  a  circular  path  
b
...
Acceleration  will  always  point  towards  the  center  of  the  circle    
d
...
Velocity  and  acceleration  are  always  perpendicular    
C
...
Period-­‐T:  time  it  takes  for  one  complete  revolution  around  the  circle    
b
...
Are  always  inverses  of  each  other    
d
...
Calculating  Speed  
a
...
The  Dynamics  of  Uniform  Circular  Motion  

a
...
Centripetal  Force:  point  towards  center  Fr=mar=mv2/r  
a
...
Misconceptions  
a
...
Centrifugal  force  is  just  a  myth    
c
...
Gravity    
a
...
8  but  it  changes  as  you  get  closer/further  from  the  earth  
(higher  elevation=less  gravity)  
b
...
Fg=Gm1m2/r2  
d
...
67x10-­‐11Nm2/kg2  
e
...
Gravity  Near  the  Earth’s  Surface  
a
...
ME=  mass  of  the  earth    
c
...
Kepler’s  Laws  (laws  of  planetary  motion)  
a
...
Each  planet  moves  so  that  an  imaginary  line  drawn  from  the  sun  to  the  planet  
sweeps  out  equal  areas  in  equal  periods  of  time    
c
...
(T1/T2)2=(S1/S2)3  
Energy    
A
...
Symmetries    
a
...
Time-­‐translation  invariance=  conservation  of  energy    
c
...
Rotation  invariance=  conservation  of  angular  momentum    
C
...
Cannot  be  created  nor  destroyed    
b
...
Can  be  converted  between  forms    
d
...
SI  units  are  Joules  (J)  
D
...
Energy  associated  with  motion,  dependent  on  mass  and  speed    
b
...
ΔKE=(1/2)mΔv2=1/2m(v2i-­‐v2f)  
E
...
Energy  associated  with  relative  positions  of  particles    
b
...
PEg=mgy  
d
...
Spring  mass  potential:  compression  or  expansion  of  spring  relative  to  its  
equilibrium  position    
f
...
We’re  only  focused  on  the  changes  in  PE  because  PE  has  no  physical  meaning  
(dependent  on  coordinate  system)  
h
...
Conservation  of  Energy    
a
...
E=  total  energy  within  a  system  
c
...
W=energy  that  enters  sytem  in  the  form  of  work    
e
...
If  no  work  enters  or  leaves  the  system,  then  ΔE=O,  system  is  conserved  
Momentum    
A
...
Momentum  is  a  quantity  of  motion    
b
...
Can  be  written  as  Newton’s  second  law    
d
...
Conservation  law  for  momentum  
f
...
No  external  impulses=  momentum  is  conserved    
h
...
Elastic:  energy  is  conserved    
ii
...
Perfectly  inelastic:  subcase  of  inelastic  where  objects  stick  together  after  
collision    
iv
...
Change  in  direction=  change  in  momentum    
B
...
we  still  only  use  one  energy  equation  but  the  momentum  equation  can  broken  
down  into  components    
b
...
Δp!tot,y=Fnet,ext,yΔt  
d
...
M1v1iy+m2v2iy=m1v1fy+m2v2fy  
f
...
Center  of  Mass  
a
...
Translational  motion  of  the  center  of  mass  of  the  object    
ii
...
X!center  of  mass  =maxa+mBxB+…/ma+mB=+…    
c
...
There  will  always  be  an  equal  amount  of  mass  on  either  side  of  the  center  as  well  
as  above  and  below  it  
Angular  Momentum  and  Rotational  Invariance    
1
...

3
...


extended  objects=center  of  mass  and  roation  aroud  the  center  of  mass  
translational  motion=  x,  v  and  a    
rotational  motion  has  matching  ideas  to  x,  v  and  a    
Rotational  Kinematics    
a
...
Often  the  axis  perpendicular  to  the  center  of  mass    
c
...
Θ=l/r  
e
...
ω!=  Δθ/Δt  (units  are  radiancs/second)  
g
...
ω  =dθ/dt  
i
...
ω  points  along  the  axis  of  rotation,  positive  direction=counter  clockwise,  negative  
direction=  clockwise  
B
...
How  an  object  accelerates  around  axis  of  rotation    
b
...
units=  radians/s2  
d
...
α=d  ω/dt    
Linear/Type  
X,  displacement    
Vtan,  velocity    
Atan  acceleration    

Rotational  
θ  
ω  
α  

Relation    
X=r  θ  
V=r  ω  
A=r  α  

 
C
...
ω=  ω0+  αt    
b
...
ω2=  ω02+2α  θ  
d
...
Rotational  Dynamics  
a
...
T=net  torque  
c
...
α=angular  acceleration    
E
...
A  rotational  force    
b
...
Sometimes  it  will  equal  the  radius  but  not  always    
d
...
This  θ  is  the  angle  between  the  r!  and  F!  when  placed  tail  to  tail    
F
...
Rotational  equivalent  to  mass  
b
...
for  continuous  objects  this  becomes  an  integral  and  will  be  given  to  you    
d
...
Conservation  of  Angular  Momentum  
a
...
ΔL/  Δt=Tnet    
c
...
If  net  torque=0,  ΔL=0  so  Li=Lf  
H
...
Torques  do  work  when  an  object  is  displaced  angularly    
b
...
P=W/  Δt  
 


Title: Physics A Final Study Guide
Description: This study guide contains all of the material from Physics 1A including terms, concepts, equations and explanations. (helped me get a 99 on the final)