Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Geometry answers
Description: Filled with answers to questions concerning advanced geometry.
Description: Filled with answers to questions concerning advanced geometry.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
CHAPTER
1
Solutions Key
Foundations for Geometry
EXERCISES, PAGES 9–11
ARE YOU READY? PAGE 3
GUIDED PRACTICE, PAGE 9
1
...
E
3
...
D
1
5
...
2
7
...
2_ cm
2
8
...
30 in
...
15
...
Possible answer: B, C, or D
11
...
-2x + 56
7
...
-x - 14
14
...
x + 3x + 7x
= 11x
= 11(-5)
= -55
16
...
2a - 8a
= -6a
= -6(12)
= -72
18
...
(0, 7)
20
...
(6, 3)
22
...
(3, -5)
24
...
Possible answer: the intersection of 2 floor tiles
2
...
Possible answer: AC , BD
5
...
9
...
Possible answer: plane ABD
11
...
PRACTICE AND PROBLEM SOLVING, PAGES 9–10
13
...
Possible answer: B, C, D, E
15
...
1-1 UNDERSTANDING POINTS, LINES,
AND PLANES, PAGES 6–11
17
...
Possible answer: G, J, and
19
...
Possible answer: plane
3
...
and plane ABC
and
21
...
3
...
22a
...
Possible answer: string
c
...
THINK AND DISCUSS, PAGE 8
1
...
1-1-1, through any 2 pts
...
Therefore any 2 pts
...
24
...
Post
...
Any 3 noncollinear pts
...
−−
4
...
U
5
...
U
27
...
If 2 pts
...
lies in the plane
...
If 2 lines intersect, then they intersect in exactly 1 pt
...
It is not possible
...
1-1-2, any 3 noncollinear
pts
...
If the 3 pts
...
In either case, the 3 pts
...
Copyright © by Holt, Rinehart and Winston
...
1
Holt Geometry
SPIRAL REVIEW, PAGE 11
31
...
Age of mother = a
Age of each daughter = a - 25
a + 2(a - 25) = 58
3a - 50 = 58
+ 50 + 50
______ ____
3a = 108
108
3a
___ = ____
3
3
a = 36
Mother is 36
...
48
...
32
...
A;
34
...
Post
...
There are 4 outcomes: (A, B, C), (A, B, D),
(A, C, D), (B, C, D); only collinear outcome is
1
(A, B, C)
...
4
49
...
37
...
1-1-2
50
...
25
3+5
median = _ = 4
2
mode: none
38
...
of intersection
...
Two of the lines may not intersect, but they might
each intersect a third line
...
mean =
Σx
_
n
2
...
442
median = 0
...
44
TECHNOLOGY LAB: EXPLORE
PROPERTIES ASSOCIATED WITH
POINTS, PAGE 12
Each line may intersect each of the other lines
...
Check students’ work
...
No; D must be between A and C
...
C; Other 3 sets are collinear
...
F; Greatest number is when each pair of lines has
separate intersection; there are 6 pairs of lines
...
D; The 2 walls are planes, and they meet in a line
...
4; Greatest number is when each triple of pts
...
1
1a
...
6
1
= 3_
2
2
...
44
...
Therefore
maximum is 45 segs
...
Maximum = number of pairs of pts
...
can be chosen in n ways
...
can be
chosen in n - 1 ways
...
Therefore
n(n - 1)
maximum = _______
...
46
...
1-11 and Post
...
A distress signal is received by
2 rescue teams
...
1-1-1, 2 pts
...
So 2 lines are created by the 3 pts
...
By Post
...
Copyright © by Holt, Rinehart and Winston
...
XZ =
XY + YZ
1
3 = 1 __ + YZ
3
1
1
- 1 __ - 1 __
3
3
____ _________
2
1 __ = YZ
3
1
b
...
DF = DE + EF
6x = 3x - 1 + 13
6x = 3x + 12
- 3x - 3x
____ ________
3x = 12
3x
12
___ = ___
3
3
x=4
DF = 6x
= 6(4) = 24
4
...
1
XT = _XY
2
1
= _ (1182
...
25 m
2
2
Holt Geometry
10
...
Step 1 Solve for x
...
KL = JK = 7
JL = 4x - 2
= 4(4) - 2 = 14
5
...
RS = ST
-2x = -3x - 2
+ 3x + 3x
____ _______
x = -2
Step 2 Find RS, ST, and RT
...
Since R is the mdpt
...
Also, ST = SR + RT
...
, ST = SR + SR =
2SR
...
PRACTICE AND PROBLEM SOLVING, PAGES 17–18
2
1
1
11
...
CD = -5_ - (-2)
3
4
4
8
3
_ + 5_
_
= -3 1
=
4
12
12
11
1
_
_
=3
= 5
4
12
11
_
=5
12
13
...
( )
2
...
XM and MY
3
...
5)
14
...
1 = CD + 8
-8
-8
____ ______
9
...
distance
4
...
5 - 1
= 3
...
5
= 2
...
5
5
...
6
...
8 = 9
...
9 _________
____ - 9
...
9 = BC
7
...
MR = MN + NR
5x - 3 = 2
...
5x
- 5x
- 5x
_______ ____
-3 = -1
...
5x
_____ = _____
-1
...
5
2=x
MN = 2
...
5(2) = 5
16
...
PQ = _PR
17
...
2
DE = EF
1
3y = __ (42)
2x + 4 = 3x - 1
2
- 2x
- 2x
_______ _______
3y = 21
4=x-1
3y
21
___ = ___
+ 1 _____
+1
___
3
3
5=x
y=7
Step 2 Find DE, EF,
1
QR = _PR
and DF
...
EF = 2(AC) + 2
19a
...
of AE
...
GH = 9
3
8
...
RS + SO = RO
23 + SO = 110
- 23
- 23
_________ ____
SO = 87
RP = RS + SP
1
= RS + _SO
2
1
= 23 + _(87) = 66
...
All rights reserved
...
DE = EF
2y = 8y - 3
- 8y _______
- 8y
____
-6y = -3
-6y
-3
____ = ___
-6
-6
y = 0
...
DE = 2y
= 2(0
...
5) - 3 = 1
DF = DE + EF
=1+1=2
3
Holt Geometry
1
21
...
2) = 7
...
22
...
GH = 2(DH)
4x - 1 = 2(8)
4x = 17
x = 4
...
B is not between A and C, because A, B, and C are
not collinear
...
Check students’ constructions
...
D
Order of pts
...
PQ + QS + SR + RT = PT
1
__QR + QR + RT = PT
2
1
__(8) + 8 + RT = 34
2
12 + RT = 34
RT = 22
24
...
S;
26
...
J
AD = 2AC
= 2(2BC)
= 4BC
= 4(12) = 48
27
...
The statement should be
−− −−
written as AM MB, not as two distances that are
...
Let x be length of shorter piece
...
AC + CB = 72
x + 5x = 72
6x = 72
6x
72
___ = ___
6
6
x = 12
AC = x = 12
CB = 5x
= 5(12) = 60
Dowel pieces are 12 cm long and 60 cm long
...
B
−−
−−
Statement must refer to segments XY and YZ, and
use symbol for congruence
...
H
Think: In AC = AB + BC, subst
...
AC = AB + BC
= BC + CD
= BD = 16
AC + CE = AE
16 + CE = 34
CE = 18
29
...
5
±4 = x N - 2
...
5 ± 4
= 6
...
5
CHALLENGE AND EXTEND, PAGE 19
1
40
...
−− −− −−
Possible answer: DE + EF = DF
31
...
RS + ST = RT
2z + 6 + 4z - 3 = 5z + 12
6z + 3 = 5z + 12
z + 3 = 12
z=9
RS + ST = RT
7y - 4 + y + 5 = 28
8y + 1 = 28
8y = 27
y = 3
...
RS + ST = RT
1
3x + 1 + __ x + 3 = 18
2
7
__x + 4 = 18
2 __
7 x = 14
2
2 7
2
__ __x = __(14)
7 2
7
x=4
42
...
5) + x = 100
89
...
5 m
43
...
72 + 9(9
...
98 + x = 110
x = 14
...
JK cannot be equal to JL because JK + KL = JL
and KL ≠ 0
...
All rights reserved
...
20 - 8 = 12 = 12
THINK AND DISCUSS, PAGE 24
1
...
are
...
-9 + 23 = 14 = 14
47
...
All rt
...
m∠ABD = m∠DBC = _m∠ABC
2
3
...
8a - 3(4 + a) - 10
= 8a - 12 - 3a -10
= 5a - 22
49
...
AB , CB
−− −−
51
...
A, B, D
53
...
∠RTQ, ∠T, ∠STR, ∠1, ∠2
2a
...
EXERCISES, PAGES 24–27
b
...
GUIDED PRACTICE, PAGE 24
1
...
C; CB , CD
c
...
3
...
m∠XWZ = m∠XWY + m∠YWZ
121° = 59° + m∠YWZ
62° = m∠YWZ
4
...
5
...
6
...
4a
...
Step 2 Find m∠PQS
...
m∠JKM = m∠JKL + m∠LKM
= 42° + 28° = 70°
8
...
5° = 56
...
1°
Step 2 Find m∠ABD
...
Step 1 Find x
...
Step 1 Find x
...
m∠LJM = 2m∠LJK
= 2(-10x + 3)
= 2(-10(-2) + 3)
= 46°
Step 2 Find m∠ABC
...
Step 1 Find y
...
∠1 or ∠JMK; ∠2 or ∠LMK; ∠M or ∠JML
12
...
13
...
14
...
15
...
6° = 66
...
All rights reserved
...
m∠RSU = m∠RST + m∠TSU
83
...
7°
m∠RST = 36
...
Step 2 Find m∠RST
...
Step 1 Find x
...
Step 1 Find y
...
acute
21
...
obtuse
Step 2 Find m∠RSP
...
m∠AOB = (360) · 0
...
m∠BOC = (360) · 0
...
10 = 36°; acute
m∠DOA = (360) · 0
...
m∠COD = 2(36) = 72°
m∠BOC = 126 - 36 = 90°
360
36
...
No; an obtuse ∠ measures greater than 90°, so it
cannot be to an acute ∠ (less than 90°)
...
Check students’ drawings
...
5x + 45 < 180
5x < 135
x < 27
27
...
m∠ASB + m∠BSC = m∠ASC
3x + x = 90
4x = 90
90
4x
___ = ___
4
4
x = 22
...
5) = 67
...
5°
39
...
2
40
...
Each ∠ should
measure 35°
...
First construct the bisector of the given ∠
...
The resulting will
1
have _ the measure of the original ∠
...
m∠AOC + m∠DOC + m∠EOD = 180°
7x - 2 + 2x + 8 + 27 = 180
9x + 33 = 180
9x = 147
147
1
x = ____ = 16_
3
9
41
...
H
m∠UOX = m∠UOW + m∠WOX
= 50 + 90
= 140°
30
...
C
m∠ABC = m∠ABD + m∠DBC = 2m∠ABD
4x + 5 = 2(3x - 1)
4x + 5 = 6x - 2
5 = 2x - 2
7 = 2x
x = 3
...
m∠AOB + m∠BOC = m∠AOC
6x + 5 + 4x - 2 = 8x + 21
10x + 3 = 8x + 21
2x + 3 = 21
2x = 18
x=9
44
...
Let m∠QRS = x
...
Step 1 Find x
...
All rights reserved
...
c
...
m∠LOK < 90°
5x + 12 < 90
5x < 78
x < 15
...
6
20
...
( )
m∠LOK = 57°
3x + 2x + 12 = 57
5x + 12 = 57
5x = 45
x=9
(
)
45
...
An obtuse ∠ measures between
1
90° and 180°
...
6
Holt Geometry
CHALLENGE AND EXTEND, PAGE 27
1-4 PAIRS OF ANGLES, PAGES 28–33
46
...
The
angle formed at 7:00 is the (lesser) angle between
the 12 and the 7, which measures 5(30) = 150°
...
CHECK IT OUT! PAGES 28–30
1a
...
Their noncommon
sides, PQ and PT , are opposite rays, so ∠5 and ∠6
also form a linear pair
...
∠7 and ∠SPU share SP but are on the same side of
it, so ∠7 and ∠SPU are not adjacent angles
...
∠7 and ∠8 share vertex P but do not have a
common side, so ∠7 and ∠8 are not adjacent
angles
...
(90 - y)°
90° - (7x - 12)° = 90° - 7x + 12°
= (102 - 7x)°
48
...
(180 - x)°
180° - 116
...
5°
3
...
Then ∠B, its supplement,
measures (180 - x)°
...
1
x = __ (180 - x) + 12
2
x
x = 90 - __ + 12
2
x
x = 102 - __
2
3
__x = 102
2
2 3
2
__ __x = __(102)
3 2
3
x = 68
m∠A = x ° = 68°
49
...
25° = (60 · 60 · 2
...
∠ABC ∠DBC
m∠ABC = m∠DBC
3x
1
___ + 4 = 2x - 27__
4
2
1
31
...
25) = 2 __ x
2
x = 62
...
5, and substituting this value into the
expressions for the ∠ measures gives a sum of 195
...
( )
( )
SPIRAL REVIEW, PAGE 27
4
...
List important information:
· ∠1 ∠2
· ∠1 and ∠3 are comp
...
· m∠3 = 27
...
35 · 64% = 35 · 0
...
4
33
...
_ · 100% = 12%
280
53
...
2 Make a Plan
If ∠1 ∠2, then m∠1 = m∠2
...
, then m∠1 = (90 - 27
...
If ∠2 and ∠4 are comp
...
6)°
...
3 Solve
m∠1 = m∠2 = (90 - 27
...
4°
m∠3 = m∠4 = (90 - 62
...
6°
56
...
KL = 3x
= 3(2)
=6
4 Look Back
Answer makes sense because
27
...
4° = 90°, so ∠1 and ∠3 are comp
...
Thus m∠1 = 62
...
4°, and m∠4 = 27
...
58
...
All rights reserved
...
Possible answer: ∠EDG and ∠FDH are vert
...
∠EDG ≈ ∠FDH ≈ 45°
...
1 Understand the Problem
Answers are measures of ∠2, ∠3, and ∠4
...
, and ∠2 and ∠4 are comp
...
5°
THINK AND DISCUSS, PAGE 31
1
...
measure 90°, so the sum of the measures
of any 2 rt
...
Therefore any 2 rt
...
2
...
cannot be adj
...
of vert
...
formed by intersecting
lines
...
If ∠1 and ∠3 are comp
...
5)°
...
, then m∠4 = (90 - 18
...
3
...
5°
m∠3 = m∠4 = (90 - 18
...
5°
4 Look Back
Answer makes sense because
18
...
5° = 90°, so ∠1 and ∠3 are comp
...
Thus m∠2 = 18
...
5°, and m∠4 = 71
...
EXERCISES, PAGES 31–33
GUIDED PRACTICE, PAGE 31
1
...
∠ABE and ∠CBD are vert
...
2
...
∠1 and ∠2 are adj
...
Their noncommon sides,
EG and EJ , are opposite rays, so ∠1 and ∠2 also
form a lin
...
; ∠ABC and ∠EBD are
PRACTICE AND PROBLEM SOLVING, PAGES 32–33
14
...
angles
...
pair
...
∠1 and ∠3 share vertex E but do not have a
common side, so ∠1 and ∠3 are not adj
...
5
...
angles
...
∠2 and ∠3 are adj
...
Their noncommon sides
are opposite rays, so ∠2 and ∠3 also form a lin
...
6
...
angles
...
angles
...
∠3 and ∠4 are adj
...
Their noncommon sides
are not opposite rays, so ∠3 and ∠4 are only adj
...
7
...
2° = 98
...
∠3 and ∠1 share a vertex but do not have a
common side, so ∠3 and ∠1 are not adj
...
8
...
2° = 8
...
(180 - x)°
19
...
4° = 123
...
4° = 33
...
(180 - y)°
180° - (6x - 5)° = 180° - 6x + 5
= (185 - 6x)°
20
...
(90 - y)°
90° - (6x - 5)° = 90° - 6x + 5
= (95 - 6x)°
21
...
Step 1 Let m∠A = x°
...
,
measures (90 - x)°
...
x = 3(90 - x) + 6
x = 270 - 3x + 6
x = 276 - 3x
4x = 276
x = 69
m∠A = x = 69°
22
...
Step 2 Write and solve an equation
...
5
m∠A = x = 67
...
5° = 22
...
∠1 ∠2
m∠1 = m∠2 = 22
...
3° = 67
...
∠PTU, ∠VTR; ∠UTQ, ∠STV; ∠QTR, ∠PTS;
∠PTQ, ∠STR; ∠UTR, ∠PTV; ∠QTV, ∠UTS
Copyright © by Holt, Rinehart and Winston
...
8
Holt Geometry
32
...
Therefore the measure of its supp
...
is an obtuse
∠
...
Possible outcomes are (30°, 60°), (30°, 120°),
(30°, 150°), (60°, 120°), (60°, 150°), (120°, 150°)
...
outcomes are (30°, 150°) and (60°, 120°)
...
) = _ = _
6
3
33a
...
Step 1 Find x
...
m∠ABD = 5x = 5(9) = 45°
m∠BDE = 17x - 18 = 17(9) - 18 = 135°
Step 1 Find x
...
m∠JAH = 3x - 8 = 3(24) - 8 = 64°
m∠KAH = x + 2 = 24 + 2 = 26°
27
...
m∠ABD + m∠BDE = 180°
3x + 12 + 7x - 32 = 180
10x - 20 = 180
10x = 200
x = 20
Step 2 Find ∠ measures
...
Step 1 Find x
...
5
Step 2 Find ∠ measures
...
5) - 8 = 131
...
5 + 2 = 48
...
Step 1 Find x
...
6
Step 2 Find ∠ measures
...
6) - 12 = 103
...
6) + 48 = 76
...
29
...
m∠ABD + m∠BDC = 90°
5y + 1 + 3y - 7 = 90
10y - 6 = 90
8y = 96
y = 12
Step 2 Find ∠ measures
...
m∠JAH = m∠KAH
3x - 8 = x + 2
2x = 10
x=5
Step 2 Find ∠ measures
...
F; the supp
...
30
...
m∠ABD + m∠BDC = 90°
4y + 5 + 4y + 8 = 90
8y + 13 = 90
8y = 77
y = 9
...
m∠ABD = 4y + 5 = 4(9
...
5°
m∠BDC = 4y + 8 = 4(9
...
5°
35
...
lin
...
36
...
The 2
so the
, so they cannot form a
37
...
45° + 45° = 90°,
are comp
...
TEST PREP, PAGE 33
39
...
Step 1 Find y
...
m∠ABD = y - 30 = 40 - 30 = 10°
m∠BDC = 2y = 2(40) = 80°
Copyright © by Holt, Rinehart and Winston
...
cannot be adj
...
H
x + 2x = 90
3x = 90
x = 30
m∠2 = 2(30) = 60°
Holt Geometry
41
...
H
7x + 5x = 180
12x = 180
180
12x
____ = ____
12
12
x = 15
m∠2 = 5(15) = 75
MULTI-STEP TEST PREP, PAGE 34
1
...
4 pairs of 45° + 4 pairs of 90°
+ 4 pairs of 135° = 12 pairs of vert
...
Let ∠ measure be x °
...
3
...
Let ∠ measure be x °
...
adj
...
and a lin
...
; comp
...
READY TO GO ON? PAGE 35
1
...
4x + 10 = 42
4x = 32
x=8
49
...
-(d + 4) = 18
-d - 4 = 18
-d = 22
d = -22
6
...
plane TVX
8
...
SV = 5 - (-1
...
5 = 6
...
TR = 2 - (-4) = 6 = 6
−−
11
...
5) = 3
...
5
XY + YZ = XZ 52
...
YZ = 2x - 2
= 2(17) - 2 = 32
4
...
Possible answer:
T, V, W
48
...
25
2
...
SPIRAL REVIEW, PAGE 33
51
...
X is the mdpt
...
RX = XT
10x - 6 = 3x + 8
7x = 14
x=2
RT = RX + XT
= 10x - 6 + 3x + 8
= 13x + 2
= 13(2) + 2 = 28 ft
12
...
PR = 2PQ
8z - 12 = 2(2z)
8z - 12 = 4z
-12 = -4z
z=3
PQ = 2z = 2(3) = 6
PR = 8z - 12
= 8(3) - 12 = 12
54
...
m∠WYZ = m∠WYX + m∠XYZ
= 26° + 26° = 52°
13
...
15
...
All rights reserved
...
acute
17
...
obtuse
19
...
Both terms refer to the dist
...
3
...
Check students’ work
...
P = 4s
= 4(y - 3)
= 4y - 12
A = s2
= (y - 3) 2
= y 2 - 6y + 9
5
...
base and height
21
...
angles
...
pair
...
∠4 and ∠5 are adj
...
Their noncommon sides
are not opposite rays, so ∠4 and ∠5 are only adj
...
∠3 and ∠4 share a vertex but do not have a
common side, so ∠3 and ∠4 are not adj
...
1
1
is A = _bh = _(3)(4) = 6 in 2
...
The total area
of the 1600 is 1600(6) = 9600 in 2
...
(180 - y)°
180° - (5x - 10)° = 180° - 5x + 10
= (190 - 5x)°
6
...
(90 - y)°
90° - (5x - 10)° = 90° - 5x + 10
= (100 - 5x)°
2
7
...
1) = 4
...
2 m
A = πr
= π(2
...
41π
≈ 13
...
C = 2πr
= 2π(7) = 14π
≈ 44
...
A = πr
= π(7) 2 = 49π
≈ 153
...
r = _ = ___ = 8 cm
2
2
C = 2πr
= 2π(8) = 16π
≈ 50
...
1 cm 2
1
...
5) = 14 in
...
5) 2 = 12
...
The area of one rectangle is
A = w = (6
...
5) = 16
...
The total area of the 4 rectangles is
4(16
...
3
...
0 m
2
2
PRACTICE AND PROBLEM SOLVING, PAGES 38–40
10
...
4) = 29
...
P = 2 + 2w
= 2(x + 6) + 2x
= 4x + 12
THINK AND DISCUSS, PAGE 37
1
...
with length 8 in
...
; a square with sides 4 in
...
and height 8 in
...
P = a + b + c
= 5x + 8 + 4x
= 9x + 8
A = πr 2
= π(14) 2 = 196π
≈ 615
...
4) 2 = 54
...
13
...
5) = 2
...
2
2
2
is 32(2
...
14
...
4 m
2
A = πr
= π(12) 2 = 144π
≈ 452
...
r = _ = 6
...
25) = 12
...
3 ft
A = πr 2
= π(6
...
0625π
≈ 122
...
All rights reserved
...
r = _ = _ mi
2
4
C = 2πr
1
1
= 2π _ = _π
4
4
≈ 1
...
P = π(4) + 2(3) + 2 √3 2 + 4 2 ≈ 28
...
2 in
...
2 in
...
= 14
...
39) = $20
...
2 mi
()
()
2
b
...
30 - $20
...
45
2
17
...
A = s
= (9
...
81 yd 2
= (x + 1) 2
= x 2 + 2x + 1
1
c
...
1 ft
1
19
...
5)(2
...
1875 in 2
2
20
...
75 = 1
2
__h
6
...
75) = __ __h
3
3 2
h = 4
...
Area of garden ≈ 25
...
(a + 1)(c + 1)
Areas of small rects
...
Sum of areas = ac + a + c + 1
...
equals area of large rect
...
(a + 1) 2
Areas of small rects
...
Sum of areas = a 2 + 2a + 1
...
equals the area of the large rect
...
Possible answer:
A = πr 2
64π = πr 2
64 = r 2
r = √64 = 8
2
23
...
The radius is 4 cm, not 8 cm
...
A = πr 2
24
...
max
...
area
= (110)(75) - (100)(64)
= 8250 - 6400 = 1850 m 2
1
33
...
Dist
...
C = 2πr
= 2π(3964) = 7928π
≈ 24,907 mi
1
A = __ bh
2
__(22
...
5 = 1
2
282
...
3h
h = 25 yd
36
...
348 mi
2
5280
A= w
= (x + 1)(x - 3)
= x 2 - 2x - 3
29
...
1
h = b - 3; A = _bh = 19b
2
Step 2 Find h
...
Step 3 Find b
...
Copyright © by Holt, Rinehart and Winston
...
34
...
A = bh
= (9
...
7) = 26
...
For a square, the length and width are both s, so
P = 2 + 2w = 2s + 2s = 4s and
A = w = s(s) = s 2
...
P = 2 + 2w
= 2(x + 1) + 2(x - 3)
= 4x - 4
2
31a
...
are ac, ad, bc, and bd
...
This must be equal to (a + b)(c + d), because sum
of areas of 4 small rects
...
A= w
347
...
3w
w = 17
...
1
d
...
A = bh
= (3(3) + 12)(11) = 231 ft 2
231
2 2
= ____ = 25 __ yd
2
3
3
38
...
4) + 2(7
...
4 in
...
b = 4 ft 6 in
...
5 ft; h = 6 in
...
5 ft
P = 2b + 2h
= 2(4
...
5) = 10 ft
40
...
C = 2πr
14 = 2πr
7
__ = r
π
14
d = 2r = ___
π
43
...
Aactual = πr 2
= π(4
...
25π
Aestimate = s 2
= 8 2 = 64
Aestimate - Aactual
Percent error = ______________ · 100%
Aactual
64 - 20
...
25π
≈ 0
...
55
...
4
w=_
5
Step 2 Substitute in formula for area of a rectangle
and solve to find
...
Missing outer dimensions:
17 - 4 = 13 yd; 9 - 4 = 5 yd
P = 17 + 5 + 4 + 4 + 13 + 9 = 52 yd
A = sum of areas of two rects
...
Measure any side as the base
...
of the
at a rt
...
46
...
( )
2
400 =
√400 =
= 20 in
...
4
4
w = _ = __ (20) = 16 in
...
B
A = πr 2
452 = πr 2
452
____ = r 2
π
452
r = ____ ≈ 12
...
π
√
49
...
G
= 2w
P = 2 + 2w
P = 2(2w) + 2w
P = 6w
48 = 6w
w=8m
= 2w
= 2(8) = 16 m
SPIRAL REVIEW, PAGE 41
56
...
plane
50
...
= 30 ft
51
...
- A circle
2
= w - πr
= (14)(8) - π(3) 2 = 112 - 9π
≈ 83
...
w = ______
2
9 -2(3)
= _______ = 1
...
Think: assume that ≥ w
...
So possible areas are
A= w
= (5)(1) = 5; or (4)(2) = 8; or (3)(3) = 9
Copyright © by Holt, Rinehart and Winston
...
59
...
Let a and b be the lengths
...
a = 4b
10 = a + b
10 = 4b + b
10 = 5b
10
5b
___ = ___
5
5
b = 2 yd
a = 4b = 4(2) = 8 yd
−− −−
AB BC
61
...
5 - (-8) = C - (-2
...
5 = C - (-2
...
Therefore
C - (-2
...
5
C = -2
...
5 = 3
CHALLENGE AND EXTEND, PAGE 41
52a
...
D: {4, -2, 16}
R: {-2, 8, 0}
62
...
Method 1 Use Dist
...
Subst
...
of R and S into Dist
...
CONNECTING GEOMETRY TO ALGEBRA:
GRAPHING IN THE COORDINATE PLANE,
PAGE 42
RS =
=
1
...
(0, 4)
3
...
(-1, 0)
5
...
Spruce and Hickory
7
...
Pine and Birch
CHECK IT OUT! PAGES 43–46
b
...
Formula
...
values for
coords
...
Formula
...
5
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 6 and b = 6
c2 = a2 + b2
= 62 + 32
= 36 + 36
= 72
c = √72 ≈ 8
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
-6 + x -1 + y
(-1, 1) = _, _
2
2
Step 3 Find x-coord
...
-1 + y
-6 + x
_
-1 =
1 =_
2
2
-6 + x
-1 + y
_
_
2(-1) = 2
2(1) = 2
2
2
-2 = -6 + x
2 = -1 + y
x=4
y=3
The coordinates of T are (4, 3)
...
7
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 6 and b = 3
c2 = a2 + b2
= 62 + 3 2
= 36 + 9
= 45
c = √45 ≈ 6
...
M
(-3 - 3) 2 + (-1 - 2) 2
=
TRY THIS, PAGE 42
(x 2 - x 1) 2 + (y 2 - y 1) 2
)
5
...
Step 1 Find coords
...
E(-2, 1), F(-5, 5), G(-1, -2), and H(3, 1)
Step 2 Use Dist
...
d=
EF =
(x 2 - x 1) 2 + (y 2 - y 1) 2
(-5 - (-2)) 2 + (5 - 1) 2
2
2
= (-3) + 4
= √9 + 16 = 5
GH =
2
(3 - (-1)) + (1 - (-2))
2
2
= 4 +3
= √16 + 9 = 5
−−
Since EF = GH, EF
H(0,0)
F(90,0)
Let the pitching mound be M(42
...
8)
...
MH from center of mound to home plate is the
length of hyp
...
2
MH =
−−
GH
...
8 - 0) 2 + (42
...
8 + 42
...
84 + 1831
...
68 ≈ 60
...
All rights reserved
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
-3 + x 4 + y
1
-1_, 1 = ______ , _____
2
2
2
Step 3 Find x-coord
...
4+y
-3 + x
1
_=_
-1
1=_
2
2
2
4+y
-3 + x
3
_ =2 _
_
2
2(1) = 2
2
2
2
2=4+y
-3 = -3 + x
y = -2
x=0
The coordinates of C are (0, -2)
...
yes; _ = _ and _ = _
2
2
2
2
2
...
r represents length
of hyp
...
Yes; you can use either method to find dist
...
() (
4
...
)
(
)
)
6
...
of each point
...
Formula
...
hypotenuse
x1 + x2 y1 + y2
2
...
Step 1 Find coords
...
J(-4, 0), K(1, -2), R(-3, -2), and S(3, -5)
Step 2 Use Dist
...
)
4 + (-4) -6 + 2
0 -4
(_, _) = (_, _)
2 2
2
2
(
d=
JK =
= (0, -2)
=
x +x y +y
(_, _)
2
2
0 + 3 -8 + 0
3 -8
(_, _) = (_, _)
2 2
2
2
1
2
1
2
1
= 1_, -4
2
(
(
RS =
=
)
Copyright © by Holt, Rinehart and Winston
...
(1 - (-4)) 2 + (-2 - 0) 2
5 2 + (-2) 2
(
(3 - (-3)) 2 + (-5 - (-2)) 2
√6 2 + (-3) 2
= √36 + 9
= √45 = 3 √5
−−
Since JK ≠ RS, JK
−−
RS
...
Method 1 Use Dist
...
Subst
...
of A and B into Dist
...
)
)
(x 2 - x 1) 2 + (y 2 - y 1) 2
= √25 + 4 = √29
4
...
of N equal (x, y)
...
Formula:
-3 + x -1 + y
(0, 1) = _, _
2
2
Step 3 Find x-coord
...
-1 + y
-3 + x
0= _
1= _
2
2
-3 + x
-1 + y
_
2(0) = 2 _
2(1) = 2
2
2
0 = -3 + x
2 = -1 + y
x=3
y=3
The coordinates of N are (3, 3)
...
GUIDED PRACTICE, PAGE 47
3
...
4
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 5 and b = 2
c2 = a2 + b2
= 52 + 2 2
= 25 + 4
= 29
c = √29 ≈ 5
...
Method 1 Use Dist
...
Subst
...
of X and Y into Dist
...
XY =
15
...
of C equal (x, y)
...
Formula
...
Find y-coord
...
2
=
(-2 - (-2)) + (-8 - 7)
=
2
(0) 2 + (-15) 2
= √0 + 225 = 15
...
Thm
...
formed by X and Y
...
0
16
...
of each point
...
Step 2 Use Dist
...
DE =
VW =
(x 2 - x 1) + (y 2 - y 1)
4 2 + (-2) 2
= √16 + 4 = √20 = 2
2
2
=
(-4 - 2) + (8 - (-1))
=
FG =
2
(-6) 2 + 9 2
=
DE =
=
RS =
=
UV =
=
x +x y +y
(_, _)
2
2
2
1
2
12 + (-5) -7 + (-2)
7 -9
(_, _) = (_, _)
2 2
2
2
=
1
1
3_, -4_
(2
Copyright © by Holt, Rinehart and Winston
...
5
2
(2 - (-3)) + (-2 - (-4)) 2
52 + 22
(-3 - 0) 2 + (-9 - 1) 2
(-3) 2 + (-10) 2
2
19
...
Formula
...
9
Method 2 Pyth
...
Count the units for the legs of
the rt
...
a = 8 and b = 4
c2 = a2 + b2
= 82 + 4 2
= 64 + 16 = 80
c = √80 ≈ 8
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
-3 + x 5 + y
(7, -9) = _, _
2
2
Step 3 Find x-coord
...
5+y
-3 + x
_
7=
-9 = _
2
2
14 = -3 + x
-18 = 5 + y
x = 17
y = -23
The coordinates of R are (17, -23)
...
4
Method 2 Pyth
...
Count the units for the legs of
the rt
...
a = 3 and b = 10
c2 = a2 + b2
= 32 + 10 2
= 100 + 9 = 109
c = √109 ≈ 10
...
Method 1 Dist
...
-3 + (-1) -7 + 1
-4 -6
(_, _) = (_, _)
2
2
2
2
13
...
x +x y +y
(_, _)
2
2
1
2 2 + (-4) 2
= √16 + 4 = √20 = 2
PRACTICE AND PROBLEM SOLVING, PAGES 47–48
2
(4 - 2) + (-1 - 3)
5
2
17
...
of each point
...
Step 2 Use Dist
...
11
...
Thm
...
c2 = a2 + b2
= 222 + 16 2
= 484 + 256 = 740
c = √740 ≈ 27
...
= √36 + 81 = √117 ≈ 10
...
Thm
...
formed by V and W
...
8
12
...
Method 1 Use Dist
...
Subst
...
of V and W into Dist
...
2
)
) (
(
(x 2 - x 1) 2 + (y 2 - y 1) 2
)
16
Holt Geometry
20
...
Formula
...
Use Pyth
...
a = 960 and b = 750
c2 = a2 + b2
= 9602 + 750 2
= 1,484,100
c = √1,484,100 ≈ 1218 m
2
2
2
= 15 + 4
= √225 + 16 = √241 ≈ 15
...
Thm
...
formed by P and Q
...
5
29
...
with endpts
...
Step 1 Find AB, BC, and AC
...
a = 2 and b = 4
c2 = 22 + 42
= 20
c = √20 ≈ 4
...
(
)=(
2
-4a 3a
_, _
2
2
3
_a
= -2a,
2
(
)
)
34
...
Coords
...
Coords
...
2
(3 - 2) + (-3 - 3)
Dist
...
5 - 1
...
5)) 2
2
2
= 1 + 3
...
25 ≈ 3
...
1 mi
36
...
J
Dist
...
Coords
...
1
Dist
...
from Jefferson to Milltown)
2
2
2
1
= __ √(3 - (-2)) + (-3 - (-2))
2
1
= __ 5 2 + (-1) 2
2
1
= __ √26 ≈ 2
...
All rights reserved
...
2
35
...
of mdpt
...
5, 1); coords
...
−−
of JK are (1
...
5)
...
Divide each coord
...
Dist
...
P = AB + BC + AC
= √34 + √2 + √52 ≈ 14
...
A = _bh
2
_(BC)( √2 )
=1
2
1
= _( √2 )( √2 )
2
1
= _(2) = 1 square unit
2
32
...
lie on a horiz
...
line, they share
a common y-coord
...
To find the dist
...
, find the difference of the other
coords
...
Let M be the mdpt
...
1
AM = MC = _(10) = 5
...
4 ft
(1 - (-4)) 2 + (4 - 2) 2
EF =
(-3) 2 + (-5) 2
= √1 + 1 = √2
22
...
of each point
...
Step 2 Use Dist
...
CD =
2
= √9 + 25 = √34
21
...
Thm
...
AB =
2
(-2 - 1) + (-1 - 4)
) ( )
(
)
2
2
= 8 +4
= √80 ≈ 8
...
x-coord
...
of P = _ = 2
...
of Q = y-coord
...
of Q are (2
...
CHECK IT OUT! PAGES 51–52
1a
...
MNOP → M N O P
b
...
5)(1) = 1
...
DB =
39
...
The transformation is a 90° rotation
...
6
2
2
2
XY = (a + 1 - (a - 5)) + (2a - (-2a))
2
2
2
10 = 6 + (4a)
100 - 36 = (4a) 2
4a = ± √64 = ±8
a = ±2
2
...
Let coords
...
on y-axis be (0, y)
...
of 2 pts
...
The transformation is a rotation of 90° because each
pt
...
3
...
JKLM
...
JKLM are J(1, 1), K(3, 1),
L(3, -4), and M(1, -4)
...
J (1 - 2, 1 + 4) = J (-1, 5)
K (3 - 2, 1 + 4) = K (1, 5)
L (3 - 2, -4 + 4) = L (1, 0)
M (1 - 2, -4 + 4) = M (-1, 0)
Step 3
41
...
Thm
...
y
4
4
no
44
...
f(x)
4
4
yes
5 - x2
5 - (-1)
4
2
x2 - x + 2
2
(-1) - (-1) + 2
4
1
45
...
2
1
1
46
...
m∠ABE = 180 - m∠CBE = 135°; obtuse
48
...
A = s2
= 5 2 = 25 in 2
4
...
Choose a pt
...
pt
...
A has coords
...
(-1, -3)
...
To translate A to A , 4 units are subtracted from
both the x-coord
...
Therefore, the
translation rule is (x, y) → (x - 4, y - 4)
...
b = 2h
= 2(2) = 4 ft
1
A = _bh
2
1
= _(4)(2) = 4 ft 2
2
50
...
All rights reserved
...
rotation: DEFG → D E F G
1
...
9
...
10
...
moves the same dist
...
down
...
Preimage is
XYZ; image is
11
...
A (-4 + 3, 1 - 2) = A (-1, -1)
B (1 + 3, 1 - 2) = B (4, -1)
C (1 + 3, -2 - 2) = C (4, -4)
D (-4 + 3, -2 - 2) = D (-1, -4)
Step 2
XYZ
...
translation; reflection; rotation
3
...
transformation is a translation; PQRS → P Q R S
5
...
and its image are the same dist
...
12
...
Choose a pt
...
pt
...
A has coords
...
(6, -3)
...
To translate A to A , 11 units are added to the xcoord
...
Therefore, the translation rule is
(x, y) → (x + 11, y - 4)
...
Step 1 State the coordinates of DEF
...
Step 2 Apply the rule to find the vertices of the
image
...
reflection
14
...
reflection
16
...
7
...
Choose a pt
...
pt
...
A has coords
...
(4, 4)
...
To translate A to A , 4 units are added to both the
x-coord
...
Therefore, the translation
rule is (x, y) → (x + 4, y + 4)
...
All rights reserved
...
Vertices of image are F (-3, 5), G (1, 4), and
H (-5, 0)
...
A
30
...
A
1 + (-3) = -2
32
...
R ((-2 - 1) + 4, (-2 + 3) - 1) = R (1, 0)
S ((-3 - 1) + 4, (1 + 3) - 1) = S (0, 3)
T ((1 - 1) + 4, (1 + 3) - 1) = T (4, 3)
18
...
1 to 2: (x, y) → (x, -y)
2 to 3: (x, y) → (-x, y)
3 to 4: (x, y) → (x, -y)
19
...
A
21
...
(x, y) → ((x - 1) + 4, (y + 3) - 1) = (x + 3, y + 2)
12
34
...
Transformation is (x, y) → (-y, x)
...
22
...
R (1 - 2, -4 - 8) = R (-1, -12)
S (-1 - 2, -1 - 8) = S (-3, -9)
T (-5 - 2, 1 - 8) = T (-7, -7)
24
...
The second translation moves the preimage farther
in each direction
...
M (2 + 2, 8 - 5) = M (4, 3)
N (-3 + 2, 4 - 5) = N (-1, -1)
36
...
(x, y) → (-x, y)
SPIRAL REVIEW, PAGE 55
38
...
0 = x 2 - 18x + 81
0 = (x - 9) 2
x=9
26
...
0 = x 2 + 3x - 18
0 = (x + 6)(x - 3)
x = -6 or 3
2
41
...
m(supp
...
1 = 103
...
m(comp
...
1 = 13
...
Method 1 Use Dist
...
Subst
...
of 2 pts
...
Formula
...
Find the coords
...
Then, find the
coords
...
Plot the
vertices of image pts
...
AB =
28
...
6
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 3 and b = 2
c2 = a2 + b2
= 32 + 2 2
=9+4
= 13
c = √13 ≈ 3
...
All rights reserved
...
Method 1 Use Dist
...
Subst
...
of 2 pts
...
Formula
...
They appear to be
= √1 + 16 = √17 ≈ 4
...
Thm
...
formed by 2 pts
...
1
TRY THIS, PAGE 56
1
...
in the
same direction as the endpt
...
The move together and remain a fixed dist
...
3
...
The appear to be
...
Method 1 Use Dist
...
Subst
...
of 2 pts
...
Formula
...
The
and its image rotate by the same ∠ measure
and remain the same size and shape
...
5
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 3 and b = 9
c2 = a2 + b2
= 32 + 9 2
= 9 + 81
= 90
c = √90 ≈ 9
...
The image rotates by the same ∠ measure as the
marked ∠
...
The
rotates by the same ∠ measure
...
When P coincides
with a vertex, the image also coincides with the
vertex
...
The
rotates by an ∠ of 30°, not by the measure of
the marked ∠
...
Method 1 Use Dist
...
Subst
...
of 2 pts
...
Formula
...
5
...
7
...
3
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 6 and b = 2
c2 = a2 + b2
= 62 + 2 2
= 36 + 4
= 40
c = √40 ≈ 6
...
All rights reserved
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
6 + x -2 + y
(9, 3) = _, _
2
2
Step 3 Find x-coord
...
-2 + y
6+x
_
9=
3=_
2
2
18 = 6 + x
6 = -2 + y
12 = x
8=y
The coordinates of K are (12, 8)
...
A = (6) 2 + (12)(6)
P = 4(6) + 2(12)
= 36 + 72 = 108 ft 2
= 24 + 24 = 48 ft
She would need 144 stones
...
00
...
by 18 in
...
108
(12)(18) = 216 in 2 = 1
...
_ = 72
...
5
Since 2 stones make up each rect
...
25) = $324
...
Let G be position of fountain
...
Step 1 Find coords
...
Q(4, 3), R(-3, 1), S(-2, -4), and T(5, -2)
...
Formula
...
5 ft
CG = 6
...
4 ft
QR =
−−
3
...
Check students’
−−
drawings; possible answer: reflection across AF;
rotation about B; translation from D to F; rotation
about E; translation from F to E
...
Method 1 Dist
...
A= w
= (20)(8) = 160 in 2
FG =
=
(-7) 2 + (-5) 2
10
...
translation; PQRS → P Q R S
A= w
= (6x)(3x + 2)
=18x 2 + 12x
12
...
Vertices of image are:
H (2 - 3, 1 + 2) = H (-1, 3)
4
...
(-3 - 4) 2 + (-2 - 3) 2
= √49 + 25 = √74 ≈ 8
...
Thm
...
formed by F and G
...
6
2
...
C = 2πr
= 2π(6) ≈ 37
...
3
−− −−
Since QR = ST, QR ST
...
P = 2 + 2w
= 2(6x) + 2(3x + 2)
= 12x + 6x + 4
= 18x + 4
(-3 - 4) 2 + (1 - 3) 2
2
2
= (-7) + (-2)
= √49 + 4 = √53 ≈ 7
...
0 ft
1
...
)
J (5 - 3, 1 + 2) = J (2, 3)
K (5 - 3, -2 + 2) = K (2, 0)
L (2 - 3, -2 + 2) = L (-1, 0)
2
A = πr
= π(6) 2 = 113
...
5, 7)
2
2
2 2
Copyright © by Holt, Rinehart and Winston
...
22
Holt Geometry
15
...
DE = EF
9x = 4x + 10
5x = 10
x=2
Step 2 Find DE, EF, and DF
...
From graph, transformation is a rotation of 180°
about the origin
...
angle bisector
16
...
; ∠XYZ acute; ∠ZYW acute; ∠VYZ obtuse;
∠XYW rt; ∠VYW straight
...
complementary angles
17
...
Use ∠ Add
...
m∠HJK + m∠KJL = m∠HJL
13x + 20 + 10x + 27 = 116
23x = 69
x =3
Step 2 Find m∠HJK
...
hypotenuse
LESSON 1-1, PAGES 60–61
4
...
Possible answer: GC
6
...
7
...
Step 1 Find x
...
m∠MNQ = 6x - 12 + 4x + 8
= 10x - 4
= 10(10) - 4 = 96°
9
...
JL = 2 - (-1
...
HK = 1 - (-4)
= 3
...
5
= 5 = 5
LESSON 1-4, PAGE 62
12
...
Add
...
XY + YZ = XZ
13
...
4
YZ = 21
...
8 = 7
...
only adj
...
90 - m∠ = 90 - 74
...
4°
180 - m∠ = 180 - 74
...
4°
13
...
Use Seg
...
Post
...
PR = 14x - 6
= 14(2) - 6 = 22
23
...
14
...
TU = UV
3x + 4 = 5x - 2
6 = 2x
x =3
Step 2 Find TU, UV, and TV
...
All rights reserved
...
adj
...
pair
21
...
m∠ = 4(90 - m∠) + 5
m∠ = 365 - 4m∠
5m∠ = 365
m∠ = 73°
LESSON 1-5, PAGE 62
25
...
P = 4s
= 4(x + 4)
= 4x + 16
23
2
A=s
= (x + 4) 2
= x 2 + 8x + 16
Holt Geometry
27
...
Method 1 Use Dist
...
Subst
...
of H and K into Dist
...
HK =
=
29
...
9 m
A=
=
=
≈
14
30
...
9 ft 2
= 14π ≈ 44
...
A = __ bh
2
1
102 = __ (17)h
2
2
h = ___ (102) = 12 m
17
37
...
Formula
...
values for
coords
...
Formula
...
1
Method 2 Use Pyth
...
Count the units for the
legs of the rt
...
a = 7 and b = 4
c2 = a2 + b2
= 72 + 4 2
= 49 + 16
= 65
c = √65 ≈ 8
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
5+x 0+y
(-2, 3) = _, _
2
2
Step 3 Find x-coord
...
5+x
0+y
_
-2 =
3=_
2
2
-4 = 5 + x
6=0+y
-9 = x
6=y
The coordinates of B are (-9, 6)
...
90° rotation; DEFG → D E F G
39
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
x + (-4) y + 4
(-2, 3) = _, _
2
2
Find y-coord
...
x + (-4)
y+4
_
-2 =
3=_
2
2
-4 = x - 4
6=y+4
0=x
2=y
The coordinates of A are (0, 2)
...
Y
(-2) 2 + (-7) 2
= √4 + 49 = √53 ≈ 7
...
Thm
...
formed by H and K
...
3
2
πr
π(21) 2
441π
1385
...
P = 2 + 2w
A= w
= 2(5x + 7) + 2(20)
= (5x + 7)(20)
= 10x + 54
= 100x + 140
(x 2 - x 1) 2 + (y 2 - y 1) 2
40
...
Method 1 Use Dist
...
Subst
...
of X and Y into Dist
...
XY =
(x 2 - x 1) 2 + (y 2 - y 1) 2
=
(6 - (-2)) 2 + (1 - 4) 2
=
8 2 + (-3) 2
= √64 + 9 = √73 ≈ 8
...
Thm
...
formed by X and Y
...
5
Copyright © by Holt, Rinehart and Winston
...
24
Holt Geometry
d
17
...
5 ft
2
C = 2πr
= 2π(12
...
5 ft
d
18
...
4 cm
2
C = 2πr
= 2π(1
...
8π ≈ 8
...
2
...
AB = 0
...
Possible answer: BE
= 3
...
5
5
...
Use Seg
...
Post
...
EF = 6x - 4
= 6(3) - 4 = 14
19
...
Step 1 Let coords
...
Step 2 Use Mdpt
...
2+x 4+y
(-5, 1) = _, _
2
2
Step 3 Find x-coord
...
4+y
2+x
_
-5 =
1=_
2
2
-10 = 2 + x
2=4+y
-12 = x
-2 = y
The coordinates of N are (-12, -2)
...
Step 1 Find x
...
HJ = 3x + 5
4
=3 _ +5=9
3
JK = HJ = 9
HK = HJ + JK
= 9 + 9 = 18
)
21
...
Formula
...
rt
...
180° rotation; QRS → Q R S
9
...
reflection; WXYZ → W X Y Z
10
...
m∠RTV = m∠VTS
16x - 6 = 13x + 9
3x = 15
x=5
Step 2 Find m∠RTV
...
Step 1 Find the coordinates of ABC
...
Step 2 Use (x, y) → (x + 3, y - 3) to find vertices
of image
...
m∠ = 3(180 - m∠) - 5
m∠ = 540 - 3m∠ - 5
4m∠ = 535
m∠ = 133
...
of ∠) = 180 - m∠
= 180 - 133
...
25°
12
...
2
A = πr
= π(1
...
96π ≈ 6
...
5, 4)
2
2
2 2
(
7
...
5) 2
= 156
...
9 ft2
13
...
and a lin
...
not adj
...
P = 2b + 2h
= 2(8) + 2(4)
= 16 + 8 = 24 ft
A = bh
= (8)(4) = 32 ft 2
16
...
2 m
A = πr 2
= π(15) 2
= 225π ≈ 706
...
All rights reserved
...
E
Use Seg
...
Post
...
C
Use ∠ Add
...
m∠PQR = 2m∠SQR
4x + 2 = 2(3x - 6)
4x + 2 = 6x - 12
14 = 2x
x=7
3
...
C
s=
A = ( √32 ) = 32
4 2 + 4 2 = √32
2
5
...
Add
...
m∠BFC + m∠CFD = m∠BFD
m∠BFC + 72 = 90
m∠BFC = 18°
m∠AFB + m∠BFC = m∠AFC
x + 18 = 90
x = 72
Copyright © by Holt, Rinehart and Winston
...
26
Holt Geometry
Title: Geometry answers
Description: Filled with answers to questions concerning advanced geometry.
Description: Filled with answers to questions concerning advanced geometry.