Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Biochemistry
Description: Comprehensive human biochemistry notes.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Three-­‐dimensional  structure  of  the  proteins
...
 
 
TOPIC 1
...
Levels of Protein Structure
...
Levels of Protein Structure
...
Over 300 different amino acids
exist in nature, but only 20 standard amino acids occur in proteins (also called standard aamino acids)
...
Amino acids consist of amino group (-NH2), which is basic and
carboxyl group (-COOH), which is acidic, therefore amino acids are amphoteric
...
Also attached to the carbon atom is a
hydrogen atom and distinctive side
chain (or R group)
...
Also, exist in D or L configuration, which are nonsuperimposable mirror images
...


Zwitterion: dominant
protonated
and

form of amino acids at neutral pH
...


Structure of the 20 standard amino acids: divided according to similarities in the
properties of their side chain (see handout for
structures)
...


2 configurations of peptide bonds: trans and cis
...

Trans: the 2 a-carbon atoms are on opposite sides of peptide bond
...

Also the carbonyl oxygen and amino hydrogen are trans
...

Proteins: molecular weight >5,000 Da e
...
insulin is around 5, 000 Da
Peptides: molecular weight <5,000 Da
Primary structure: linear sequence of amino acids in polypeptide chain, joined by peptide
bonds- determined by the sequence of nucleotide bases in gene encoding protein
...
Knowing primary sequence is
important for understanding the mechanism of action and determines the 3D structure of
proteins, protein function and evolutionary history
...
g
...
The a-helix is the
most abundant and stable configuration, with lowest energy
...
Also called 3
...
6
residues per turn and 13 atoms
of polypeptide backbone per
turn
...
The carboxyl
oxygen acts as a hydrogen
acceptor and the amino nitrogen
as a hydrogen donor
...
Van der
Waals
interactions
provide
additional stability
...
Stabilized by hydrogen bonds between CO group and NH group peptide
bond residues, far from each other, on same/different polypeptide
...

Β-turn (also called 310 helix): in order to fold into compact, globular structure, the
polypeptide chain often reverses direction, making a β-turn (or hairpin)
...

Tertiary structure: 3D arrangement of amino acids in polypeptide chain in space, as well as
side chain groups
...

Quaternary structure: spatial arrangement of subunits of a multimeric protein (protein
containing 2 or more polypeptide chains) and how they interact
...
g
...

Biologically active peptides: perform different functions in humans
...

• Tripeptide Glutathione (or γ-glutamyl-cysteinyl-glycine): important in redox systems,
particularly in RBCs
...

• Vasopressin: can increase blood pressure when administered in pharmacological
amounts
...

• Oxytocin: stimulates uterus contraction and induced labour in humans
...

• Enkephalines: are neuropeptides
...
All play role in control of pain
...
Endorphins bind to the same central nervous system
receptors as opiates
...
g
...

• β-lipotropin: hormone that stimulates release of fatty acids from adipose tissue
...
Include TRHC (Thyrotropin
Releasing Hormone) activates release of TSH (Thyroid Stimulating Hormone)
...
Protein folding
...

 
Protein folding:
Process by which the polypeptide chain folds into its stable, low energy, native conformation
...

According to Anfinsen’s law, the primary structure of a protein
determines its secondary, tertiary and quaternary structure
...
This occurs spontaneously, without input of
energy
...

Proteins do not fold via a ‘random search’, as this would require
millions of years
...
Short stretches of amino acid residues of the secondary
structure are formed, including regions of α-helices, β-sheets and
β-bends
...
Domains form
...
‘Molten globule’, with a compact, partially folded
conformation, substantial secondary structure and little tertiary
structure, forms
...
Conformation changes convert the ‘molten globule’ into the
native conformation, which is compact and folded, with tertiary
structure
...

Molecular chaperones:
Family of proteins, that ensure proteins are correctly folded, by binding to proteins and favoring
paths that inhibit inappropriate interactions and facilitate appropriate interactions
...
g
...

Hsp70: binds to a small stretch of
hydrophobic
amino
acids
on
the protein’s surface
...
Hsp70
dissociates by the re-binding of
ATP
...


Protein disulfide isomerase:
Catalyzes the formation of correct disulfide cross-links between cysteine residues in proteins, as
they fold
...

Prolyl-cis-trans isomerase:
Catalyze the interconversion of cis and trans peptide bonds
...
Includes:







Acetylation: introduction of acetyl group
...
g
...

Glycosylation: addition of sugars (mono or oligosaccharides) to proteins, to form
glycoproteins e
...
membrane proteins
...

Carboxylation: attachment of carboxyl group to protein, catalyzed by carboxylases
...


Protein function:
• Enzymes: catalyze chemical reactions, by converting substrates to products at the
enzyme active site
...
g
...

• Hormones:
protein
hormones
include
insulin,
glucagon,
ADH,
ACTH
(adrenocorticotropic hormone), GH (growth hormone), FSH, LH, parathyroid hormones
etc
...

• Regulation of gene transcription and translation: proteins associated with DNA;
repressors and enhancers
...
g
...

• Incorporated into cell or organelle membranes as receptors: bind effector molecular
and transduce signal from outside to inside
...
Enzymes: general properties, enzyme specificity
...
Isozymes
...

 
All enzymes are proteins, except ribozymes, which are RNA molecules that act as enzymes
...

Many enzymes require in addition to a substrate, a cofactor, for their activity
...
Metals e
...
Zn, Fe, Mn and Cu bind to the substrate or
stabilize intermediates in the reaction
...
g
...

Enzymes are specific, catalyzing only one reaction
...
In absolute, the
enzyme catalyzes a reaction with one substrate e
...
glucokinase only phosphorylates glucose,
not other hexoses
...
g
...

Reaction specificity is absolute
dehydrogenase
catalyzes
the
L-glutamate to a-ketoglutarate,
decarboxylation to GABA (gamma
acid) or its conversion to glutamine:

e
...
glutamate
oxidation
of
but not its
amino butyric

Enzyme Classification:
Enzymes are classified according to the
reaction they catalyze
...

Class 1: OXIDOREDUCTASES
...
g
...

Class 2: TRANSFERASES
...
g
...

Class 3: HYDROLASES
...
g
...

Class 4: LYASES
...
g
...


Class 5: ISOMERASES
...
g
...

Class 6: LIGASES (also called SYNTHETASES)
...
g
...

Isoenzymes (or Isozymes):
Isoenzymes are different forms of an enzyme, which catalyze the same reaction but differ in
their affinity to the substrate and regulatory factors, as well as stability
...
E
...
human sera contains isoenzymes of lactate dehydrogenase (LDH)
...
H and M can randomly combine with each other, forming 5 isoenzymes:
1
...

3
...

5
...


 
Clinical importance: under normal conditions, little LDH is found in blood, therefore the
appearance of some isozymes in blood is a sign of tissue damage e
...
LDH1 and 2 in serum is
found in patients with myocardial infraction and LDH5 in serum is found in patients with liver
disease
...
It consists of 3 isoenzymes:
1
...
MB CK2 in heart (increases in patients with myocardial infarction)
3
...
 

In contrast, alloenzymes are molecular variants of enzymes in individuals, families and ethnic
groups e
...
there are multiple variants of glucose 6 phosphate dehydrogenase
...


which has a higher free

is an intermediate state; it is neither S nor P
...


Rate of reaction is proportional to the number of molecules with free energy ≥
increase the rate of reaction by providing an alternative pathway in which
otherwise would be
...
Enzymes
is lower than

ΔG is the difference
in free energy
between S and P
...
e
...
e  chemical  affinity    
Substrate  induces  conformational  
change  in  active  site-­‐  this  changes  
the  amino  acids/other  groups  in  
the  enzyme  

TOPIC   4   BIOCHEMISTRY:   KINETICS   OF   ENZYME   CATALYSIS,   COMPETITIVE   and   NON-­‐COMPETITIVE  
INHIBITION,  EXAMPLES  OF  INHIBITORS  AS  DRUGS
...
   
Rate  of  reaction:  amount  of  product  formed  vs  

time
...
  ES   complex   can  
dissociate   to   form   E   +   S   or   proceed   to   form   E   and   product   (P)
...
   
 
 
At   point   A,   the   reaction   is   very   rapid
...
 Problem:  how  do  you  measure  the  rate  of  
reaction  when  it  changes?  In  enzyme  kinetics,  we  don’t  measure  all  points,  
just  the  initial  rate  of  reaction
...
  Therefore   we   can   estimate   Vmax   by   using  
high  [S]
...
 Is  a  measure  of  the  stability  of  ES  
complex  and  affinity  of  E  for  S
...
   
 

                                                         
A   better   estimate   of   Vmax   and   Kmax   can   be   achieved   by  
plotting  1/V  against  1/[S]  in  a  Lineweaver-­‐Burk  plot:    
Use  reciprocal  of  the  Michaelis-­‐Menten  equation,  to  draw  
Lineweaver-­‐Burk  plot:    
 

 
The  rate  of  reaction  of  enzymes  can  be  lowered  by  inhibitors
...
 Reversible  inhibition  is  subdivided  into  competitive  and  non-­‐competitive
...
 The  competitive  inhibitor  binds  
reversibly   to   the   active   site   and   rapidly   dissociates   from   the   enzyme-­‐inhibitor   (EI)  
complex
...
 
Competitive   inhibition   can   be   overcome   by   increasing   [S]
...
   
 
The   competitive   inhibitor   increases   the   slope   of   the   line  
on   the   Lineweaver-­‐Burk   plot   and   alters   the   intercept   on  
the  x-­‐axis  (since  Km  is  increased)  and  leaves  the  intercept  
on  the  y-­‐axis  unchanged  (since  Vmax  remains  the  same)
...
  This  
changes   the   enzyme’s   3D   shape,   thus   reduces   its   catalytic   activity
...
  The   competitive   inhibitor   binds   reversibly   to   the   enzyme   and   rapidly  
dissociates  from  the  enzyme-­‐substrate-­‐inhibitor  (ESI)  complex
...
  The   affinity   of   the   enzyme   for   the   enzyme’s   substrate   is   unchanged,   so  
Km  remains  the  same
...
     
 
The  non-­‐competitive  inhibitor  increases  the  slope  of  
the   line   on   the   Lineweaver-­‐Burk   plot   and   alters   the  
intercept   on   the   y-­‐axis   (since   Vmax   is   decreased)   but  

leaves  the  intercept  on  the  x-­‐axis  unchanged  (since  Km  remains  the  same)
...
 It  is  used  in  chemotherapy  e
...
 for  leukemia
...
 Thus,  
and  Sulfonamides
...
 THF  is  a  carrier  of  one-­‐carbon  units  and  is  
important  in  metabolic  pathways,  such  as  purine  and  pyrimidine  synthesis,  thus  affects  DNA,  RNA  and  
protein  synthesis
...
 They  are  used  as  antibacterial  drugs
...
 To  do  this,  they  compete  with  PABA  
for  the  active  sites  of  enzymes  which  synthesize  folic  acid
...
 Thus,  
sulfanilamides  inhibit  growth  and  cell  division  of  bacteria
...
 
 
Ritonavir  is  an  antiretroviral  drug  used  to  treat  HIV
...
g
...
 HIV-­‐1  protease  is  important  in  the  life  cycle  of  HIV
...
 Thus,  ritonavir  prevents  HIV  maturation
...
Control of Metabolic
Pathways, Examples: Glycogen Phosphorylase and Pyruvate Dehydrogenase
...

 
(1) Control of enzyme turnover (i
...
rate of enzyme synthesis and degradation)
(2) Control of enzyme activity (particularly of rate limiting enzymes in reaction pathway)
...
g
...

(2) Certain drugs e
...
phenobarbiturates induce Cytochrome P450
...

Enzyme synthesis is repressed by:
(1) Certain products of metabolic pathway e
...
the rate limiting enzyme in cholesterol synthesis,
HMG-CoA reductase, is repressed by cholesterol
...
e
...
g
...

Enzyme degradation is mediated by:
(1) Ubiquitin system (ATP dependent)
Ubiquitin is a small protein, present in all eukaryotic cells
...

Proteins destined for degradation are bound by several molecules of ubiquitin, with the carboxyl
(COOH) terminus of ubiquitin bound to lysine-NH2 groups of the protein
...

(2) Lysosomal-cathepsins system (ATP independent)
 
Control of enzyme activity:
Involves:
(1) Synthesis of proenzymes (inactive precursors) - also called zymogens
Proenzymes are inactive as their active sites are not completely formed or are inhibited
...
Proenzymes include digestive enzymes pepsinogen,
trypsinogen and procarboxypeptidase synthesized in the pancreas
...

(2) Covalent modification
Involves phosphorylation and dephosphorylation, catalyzed by protein kinase and protein
phosphatase, respectively e
...
glycogen phosphorylase is activated by phosphorylation, while
glycogen synthase, pyruvate dehydrogenase, acetyl CoA carboxylase, HMG-CoA reductase
etc
...

(3) Allosteric effects
Allosteric effectors bind to an allosteric site on the enzyme or a regulatory subunit
...
Allosteric effectors act as activators or
inhibitors
...
g
...

Control of metabolic pathways:
Involves:
(1) Feedback control, involving rate limiting enzymes
...
Feedback control occurs in
branching sites
...


TOPIC 6
...
Enzymes in disease diagnosis: Myocardial
infarction, Hepatitis, Acute pancreatitis, Parotitis
...
1 IU of enzyme activity catalyzes conversion of 1µmol
substrate to product per 1 minute
...
The reason
for testing enzyme activity is to show the changes that have occurred in a specific tissue or
organ due to damage or disease
...
Functional enzymes are present in the highest concentration, whereas non-functional
enzymes, at very low concentrations, but increase during disease
...
Therefore, measuring enzyme
activity is important in diagnosis as well as prognosis and treatment of disease
...
Also, few enzymes are tissue or organ
specific
...
Markers for Liver disease:
ü ASAT, ALAT and GGT
ASAT (aspartate amino transferase):
Enzyme that catalyzes the transfer of an amino group from glutamate to oxaloacetate, to form
α-ketoglutarate and aspartate
...
Exists in
cytoplasmic and mitochondrial forms
...
g
...
ASAT is non-specific, so ALAT must be tested
alongside
...

ALAT (alanine amino transferase):
Enzyme that catalyzes the transfer of an amino group from glutamate to pyruvate
...
ALAT increases with liver
damage, usually due to viral hepatitis
...
GGT is found in the liver, pancreas and kidney
...
However, it is not specific with the cause of liver disease; it
increases with many liver diseases
...

Higher levels of GGT can be found in chronic, heavy drinkers
...
ASAT and ALAT tests will indicate alcohol induced liver damage
...
Markers for Myocardial infarction:
ü CK and troponin, also LDH and myoglobin,
CK (Creatine Phosphokinase):
Enzyme that catalyzes creatine phosphate synthesis:
Creatine + ATP ↔ creatine phosphate + ADP
Found in the heart, brain, skeletal muscle
...
While total CK is non-specific,
CK-MB is specific for myocardial infarction
...

Troponin:
Protein that regulates muscle contraction
...
Exists in TnI,
TnC and TnT forms
...
After a myocardial infarction, TnI and
TnC increase within a few hours, but unlike CK-MB, remain elevate for 1-2 weeks
...

Myoglobin:
02-binding protein
...
Released more rapidly than CK and
troponin, but only remains elevated for ~24 hours
...
Found in almost all body cells, including the heart,
liver, skeletal muscle, kidneys etc
...
LD1 and LD2 are
found in the heart
...

3
...
Produced by the pancreas, as well as salivary glands
...

Lipase:
Enzyme for dietary fat digestion
...
Increased serum lipase may indicate pancreatitis
...
 Nucleotide  Structure  and  function
...
 Energy-­‐rich  compounds
...
   

 
1
...
 The  
Nucleotides  are  the  monomeric  units  of  nucleic  acids  (DNA  and  RNA)
...
 
A  nucleotide  is  a  nucleoside,  that  forms  a  phosphate  ester  with  the  C5’OH  group  of  
the  sugar
...
 
(dCMP),  deoxythymidine  5’-­‐monophosphate  (dTMP)
...
   
uridine
...
 
 
Nucleotides  are  not  only  the  monomeric  units  of  DNA  and  RNA
...
g
...
g
...
   
• AMP  (Adenosine  monophosphate):  component  of  many  coenzymes  e
...
 NAD+,  NADP+,  FAD,  
coenzyme  A  etc,  which  are  essential  for  metabolism  of  carbohydrates,  proteins  and  lipids
...
   
• UTP  (Uridine  triphosphate):  activates  substrates  e
...
 UDP-­‐glucose,  for  glycogen  synthesis  
(glycogenesis):  
 
1
...
 Glycogen  primer  (n)  +  UDP-­‐glucose  à  glycogen  (n+1)  +  UDP  (catalyzed  by  
 
glycogen  synthase)    
 
• CTP  (Cytidine  triphosphate):  synthesis  of  lipids
...
g
...
g
...
 Also  activation  of  cAMP-­‐dependent  protein  kinases,  which  for  
example  regulate  the  effects  of  glucagon  and  adrenaline
...
   
 
2
...
   
The  sugars  are  linked  to  one  another  by  phosphodiester  bridges
...
 This  is  known  as  the  sugar-­‐phosphate  backbone
...
 The  nitrogenous  bases  in  DNA  are:  adenine  and  guanine  (purines)  and  
cytosine  and  thymine  (pyridmidines)
...
 Energy  rich  compounds  (also  in  Topic  10):  
 
Molecules  containing  high-­‐energy  bonds  are  themselves  energy-­‐rich  compounds
...
 As  a  result,  energy-­‐
rich  compounds  provide  energy  for  biochemical  processes  that  require  energy
...
   
 
Class  
Bond  
Example    
Phosphoanhydrides    
–  C  –  P  –  P  
ATP  
Acyl  phosphates  
     O      
1,  3-­‐  Bisphosphoglycerate  
     ║  
–  C  –  O  ~  P  
Enol  phosphates  
–  CH    
PEP  (phosphoenol  pyruvate)    
The  squiggly  
     ║  
symbol  ~  
–  C  –  O  ~  P  
represents  the  
Thiol  esters  (thioesters)  
     C    
Acetyl  CoA  
high  energy  
     ║  
bond      
–  C  –  O  ~  S  –  
 
Guanidine  phosphate    
       |  
Phosphocreatine    
–  N~  P  
 
ATP  is  the  most  important  energy-­‐rich  compound  in  living  cells
...
 It  has  two  high-­‐energy  phosphanhydride  
bonds
...
3kcal/mol  energy
...
6  KJ/mol=  -­‐7
...
 Redox  systems  and  Coenzymes  (also  in  Topic  3):    
 
Many  enzymes  require  small  molecules  known  as  cofactors,  for  their  catalytic  activity
...
g
...
   
OR  (2)  small,  inorganic  molecules  called  coenzymes
...
 Tightly  bound  coenzymes  are  
with  its  cofactor  i
...
 
called  prosthetic  groups
...
   
holoenzyme
...
 The  oxidation  number  of  the  
FAD,  FMN    
Riboflavin  (Vitamin  B2)  
species  decreases  or  increases,  by  gaining  
NAD+,  NADP+,  NADH,  NADPH  
Niacin  (Vitamin  B3)  
(reduction)  or  losing  (oxidation)  an  e-­‐,  
+
+
Tetrahydrofolate  
Folic  acid  
respectively
...
   
 

8
...
 DNA
...
Adenine  
2
...
Thymine  
4
...
In  5’  -­‐-­‐>  3’  direction  
2
...
                                                 DNA  -­‐-­‐-­‐-­‐-­‐-­‐-­‐>  mRNA  -­‐-­‐-­‐-­‐-­‐-­‐-­‐>  Protein  
DNA  replication  –  the  process  of  self-­‐reproduction  on  cell  delivery  
DNA  transcription  –  the  process  of  complementary  RNA  synthesis  

DNA  package  






1  Nucleosome  is  made  of  200  base  pairs  wrapped  twice  around  a  histone  octamer  
Histone  Octamer  is  formed  by  2  of  each  histones  
§ H2A  
H2A  +  H2B  form  dimer
...
 
§ H3  
H3  +  H4  form  tetramer
...
 Nucleic  Acids:  RNA
...
Adenine  
2
...
Cytosine  
4
...
 Overview  of  Intermediary  Metabolism
...
 The  
High  Energy  Bond
...
Degradation  of  macromolecules:  
molecules  stored  in  cells  to  be  converted  
Proteins  -­‐-­‐-­‐>  20  AA  
into  building  blocks  needed  for  synthesis  of  
Carbs            -­‐-­‐-­‐>  Glucose  
complex  molecules
...
Degradation  of  main  organic  molecules  to  simpler  molecules:  
Pyruvate  and  Acetyl  Co-­‐A  
3
...
 

Anabolism  



Refers  to  the  conversion  of  small  molecules  into  large  ones  during  biosynthesis    
Anabolic  reactions  require  energy  (endergonic),  derived  from  ATP  à  ADP  +  inorganic  phosphate  (Pi)  
1
...
Synthesis  of  macromolecules  and  complex  compounds  from  the  main  organic  molecules
...
5  
61  
49  
43  
41  

The  causes  for  ATP  being  energy  rich  compound:  
1
...
 
2
...
5  kJ/mol  
3
...
 
The  Role  of  ATP  




May  be  used  as  a  mediator  between  super  energy  rich  compounds  and  energy  poor  compounds  
Play  a  central  role  in  energy  transfer  
ATP  has  2  transfer  levels:  
ATP  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐>  ADP  +  Pi  
ATP  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐>  AMP  +  2Pi  

Example:  In  protein  synthesis  GTP  is  hydrolysed  into  GDP  +  Pi  –  ATP  is  used  as  the  phosphate  donor  to  
regenerate  GTP:  
GDP  +  ATP  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐>  GTP  +  ADP  

11
...
 Structure  of  Electron  Transfer  Chain
...
 Regulation  of  ETC:  Inhibitors,  Uncoupling  agents
...
 
Mitochondrial  Oxidation
...
NADH  Dehydrogenase  
2
...
Cytochrome  C  Oxireductase  
4
...
 
Processes  that  take  place  in  the  mitochondria:  
-­‐ Kreb’s  Cycle  
-­‐ Oxidative  Phosphorylation  
-­‐ B-­‐Oxidation  
The  ETC  collects  the  reducing  equivalents  from  all  processes  and  direct  them  to  their  final  reaction  with  
Oxygen
...
 
1
...

3
...

5
...

7
...


9
...

11
...

Cytochrome  B  
ii
...

Cytochrome  c1  
Complex  3  transfers  electrons  to  cytochrome  C  (mobile  protein)  
Cytochrome  C  will  bind  to  Complex  4  
Complex  4  will  reduce  O2  to  H2O  
 
 
 
 
 
 

 
The  coupling  of  processes  of  [O]  &  [P]  
OXIDATIVE  PHOSPHORYLATION:  AN  ENZYMATIC  PROCESS  THAT  SYNTHESISES  ATP  FROM  ADP  




Electron  transport  &  Phosphorylation  are  said  to  be  tightly  coupled  
Protons  will  go  through  ATP  synthase  to  produce  ATP  
4  H+  +  ADP  à  1  ATP  +  Pi  

Complex  I:  Takes  H+  atoms  from  NADH,  transports  them  to  the  outer  membrane  and  splits  them  into  
protons  and  electrons
...
 
Complex  II:  Translocated  protons  are  transferred  here
...
 
Complex  
 I  
II  
III  
IV  
Total:  

No  of  p+  pumped  
4  
0  
4  
2  
10  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regulation  of  ETC:  Inhibitors,  Uncoupling  agents
...
 
Uncoupling  proteins  create  a  “p+  leak”  allowing  protons  to  re-­‐enter  the  matrix  w/o  capturing    any  
energy  as  ATP  





The  energy  is  released  as  heat  and  the  process  is  called  NONSHIVERING  THERMOGENESIS  
Nonshivering  Thermogenesis  occurs  in  brown  adipose  tissue  and  is  the  ability  to  uncouple  oxidative  
phosphorylation  from  ATP  synthesis  to  generate  heat  
UCPS  occur  in  the  inner  mitochondrial  membrane  
 
 

12
...
 Digestion  and  Absorption  of  Carbohydrates
...
 





Most  abundant  organic  molecule  in  nature  (60%  poly,  35%  di,  5%  mono)  
We  need  approx  200g  of  carbs  per  day
...
 

Digestion  
1) Starts  in  the  mouth
...
 Enzyme  =  endo-­‐glycosidase
...
   
2) Continues  in  small  intestine
...
 Cl-­‐  
activates  both  types  of  amylase
...
 
Enzymes  
Maltase,  Isomaltase,  Sucrase,  Trehalase  and  lactase  are  anchored  to  the  plasma  membrane  of  the  brush  border  of  
cells  of  the  SI
...
 
Lactose  intolerance:  
1o  –  Defective/Lack-­‐  Defective  lactase  enzyme  at  
birth  (rare)
...
 
2  o  –  Acquired  –  Consequence  of  damage  to  the  brush  border:  Tropical  sprue/  celiac  sprue  
Glucose  Transporters  –  Each  of  the  transporters  has  different  affinities  for  glucose  and  the  other  hexoses,  which  
largely  dictates  their  function
...
 

GLUT-­‐1  

Erythrocytes,  brain,  fetal  
tissues
...
 NOT  fructose
...
 
NOT  fructose
...
 
Glucose  sensor  in  pancreatic  β  
cells
...
 
NOT  fructose
...
 
Insulin  dependent
...
 NOT  
glucose/galactose
...
 Indicates  that  they  are  functioning  at  maximal  rate  under  physiological  
concentrations  of  glucose
...
 It  allows  it  to  change  transport  rate  in  proportion  to  the  increasing  glucose  
concentration  that  occurs  after  ingestion  of  a  carb-­‐rich  meal
...
 Glucose  metabolism
...
 






Glucose  can  be  converted  to  glycogen  for  storage  (particularly  in  muscle  &  liver)  
Glucose  can  be  metabolised  in  PPP    
Glucose  can  be  converted  into  other  MS’s:  Galactose,  fructose,  glucoronic  acid,  hexosamines  
Glucose  is  synthesised  in  GNG  
Glucose  metabolites  are  used  for  fat  and  AA  synthesis  

GLYCOLYSIS  
Main  glucose  degradation  pathway,  resulting  in  ATP  production
...
 
Main  strategy:-­‐  1
...
 Chemical  transformation  into  compounds  possessing  energy-­‐rich  bonds  
 
 
3
...
 
 
Overall  Process:  Glucose  +  2ADP  +  2Pi  à  2  Pyruvate  +  2ATP  +  2NADH2  +  2H2O  
 

In  Anaerobic  conditions:  Glucose  +  2ADP  +  2Pi  à  2Lactate  +  2ATP  +  2H2O  

 











Energy  Gain  =  2ATP  (1)  –ATP  (3)  –ATP  (7)  +2ATP  (10)  +2ATP  ===  Total  2ATP  
Anaerobic  Glycolysis  is  used  in  muscles  when  energy  requirement  must  be  fast,  e
...
 in  a  sprint
...
 
Anaerobic  Glycolysis  also  occurs  in  white  muscle  fibre,  smooth  muscle,  intestine,  renal  medulla,  skin
...
 
Lactate  is  used  in  liver  for  GNG  and  in  the  heart,  by  converting  it  to  pyruvate  à  krebs
...
 Oxidative  Decarboxylation  of  Pyruvate
...
 Regulation
...
 
Oxidative  Decarboxylation  of  Pyruvate  






Pyruvate  must  be  transported  into  the  mitochondrion  before  it  can  enter  the  TCA  cycle
...
   
Pyruvate  dehydrogenase  complex  is  a  major  source  of  acetyl  CoA  
Oxidative  decarboxylation  in  aerobic  glycolysis  requires  Vitamin  B1  

Pyruvate  Dehydrogenase  Complex  (PDC)  –  multi-­‐enzyme  complex,  which  catalyzes  pyruvate  oxidation  and  
decarboxylation
...
 
Functions  –  OXD  decarboxylation  of  a-­‐keto-­‐
glutarate  DH  complexes  
-­‐  decarboxylation  of  a-­‐keto  derivatives  of  
branched  a-­‐amino  acids;  Leucine,  valine  and  isoleucine  
Regulation  of  the  PDC  






PDH  Kinase  [P]  &  inactivates  Pyruvate  DH    
PDH  Phosphatase  dephosphorylates  &  [A]  Pyruvate  DH    
Calcium  [A]  PDH  phosphatase
...
 

Note:  This  is  particularly  important  in  skeletal  muscle,  where  release  of  Ca2+during  contraction  stimulates  the  
PDH  complex,  and  thereby  energy  production
...
 Forms  the  coenzyme  CoA
...
Regulation
...

Relationship with other metabolic pathways
...
The main function of this cycle is
oxidation of acetyl-coA and production of NADH and FADH for the respiratory chain
...
The oxaloacetate acts as a catalyst (Mediates
the process and is regenerated at the end of the cycle
...
(1 molecule of
Oxaloacetate mediates the oxidation of numerous acetyl-coA molecules
...

There are 8 reactions which begin and end with the same product
...

The net reaction of the Krebs cycle:
CH3CO-CoA + 3NAD + FAD + ADP + Pi + 2H2O → 2CO2 + 3NADH2 + FADH2 +
ATP + CoASH
Reactions
1
...
OA binds to the active site of Citrate synthase causing conformational changes which expose the
residues which then bind to the Acetyl-CoA to form Citryl-coA which is hydrolysed by Water to Citrate and CoA
...


2
...
The isomerisation is an endergonic and reversible
process
...
)
3
...
Oxidative decarboxylation coupled to the reduction of NAD to NADH2
...
This reaction is the main regulatory step in the cycle
...
)
4
...
There are also 5 coenzymes required
for the overall reaction; thiamine pyrophosphotase, lipoic acid, CoASH, FAD and NAD+
...
The lesser amount of energy in the thioester bond is
used for the generation of GTP in the next step of the cycle…
5
...
This reaction is an example of
substrate level phosphorylation
...


6
...
This reaction is bidirectional and begins with the single electrons from 2 adjacent methylene
groups (-CH2) of succinate to one FAD bound to the Succinate DH, leaving the Succinate to form a double bond,
converting it to Fumarate
...

7
...

8
...


One complete cycle of the Krebs cycle produces 3 NADH2, 1 FADH2 and 1 ATP
...
)
Regulation:

The main regulatory reaction is step 3 by Isocitrate DH
...


Lesser regulatory steps
...

~ Citrate synthase is inhibited by ATP, NADH and Citrate
...

Amphibolic (Both anabolic and catabolic) nature of the Krebs cycle means that in every tissue intermediates (citrate malate,
Oxaloacetate) are removed
...
α -Ketoglutarate and oxaloacetate can, for example,
serve as precursors of the amino acids aspartate and glutamate by simple transamination
...


§

α –Ketoglutarate is used in glutarate and γ-AMB synthesis, important in nervous tissue
...


§

Malate is used in Gluconeogenesis
...


The Krebs Cycle is the final common stage of oxidative degradation of lipids, carbohydrates, and amino acids
...


Topic 16|Aerobic glycolysis
...

Glycerophosphate shuttle and malate shuttle to transport reducing equivalents
to mitochondria
...
This occurs in the
cytosol of the cell and directly generates ATP by transfer of high-energy phosphates from intermediates to ADP
...
If the cell contains mitochondria then the reducing equivalents of NADH can be transferred to the
mitochondrial ETC and the pyruvate can be completely oxidised to CO2 in the Krebs Cycle
...
Most cells are dependent upon glucose as fuel
...
g
...

In other cells, glycolysis must be AEROBIC, e
...
Heart, Brain, Retina, Renal cortex, and red muscle fibers
...


Glycolysis

2
...


Degradation of acetyl-CoA in the Krebs cycle and production of reducing equivalents

4
...


Transport of pyruvate and NADH through the inner mitochondrial membrane

GLYCOLYSIS
C6H12O6 + 2 NAD+ + 2 ADP + 2 P

2 pyruvate(CH3(C=O)COOH + 2 ATP + 2 NADH + 2 H+

Transfer of REs (reducing equivalents (NADH)) across the mitochondrial membrane requires the use of a shuttle system because the
inner mitochondrial membrane is impermeable to NADH
...
Transport
of reducing equivalents across the inner mitochondrial membrane is mediated by glycerophosphate shuttle and Malate-aspartate
shuttles
...

GLYCEROPHOSPHATE SHUTTLE (Glycerol-3-phosphate shuttle)
This shuttle transfers REs from cytosol to mitochondria only
...
This shuttle is mainly located in the brain and in muscle cells
...

MALATE-ASPARTATE SHUTTLE
This shuttle system is located in liver and heart cells and transports cytosolic and mitochondrial equivalents
...


Malate for α –Ketoglutarate

2
...
These enzymes have cytosolic and
mitochondrial isoenzyme forms
...
It yields 3 moles of ATP per mole
of cytosolic NADH
...


-Oxaloacetate in the mitochondria is transaminated with α –Ketoglutarate to produce Oxaloacetate and glutamate
...

A total of 36 ATPs are gained if the G-3-p DH shuttle is used, where instead of 2 molecules of reduced NADH2 in the cytosol, 2
molecules of reduced FADH2 are produced in the mitochondria
...
The red muscle fibers contain many more mitochondria to carry out aerobic glycolysis
whereas the white muscle fibers perform anaerobic glycolysis preferentially
...
The lactic acid cycle
...
The lactic acid thus generated should not be allowed to accumulate in the muscle tissues
...
This lactate diffuses into the
blood
...
Lactate then reaches 49 liver where it is oxidized to pyruvate
...

This cycle is called cori's cycle, by which the lactate is efficiently reutilised by the body
...
The lactate in the liver can enter the GNG pathway and become
glucose which then enters the blood and then muscles
...
Unlike the Liver, muscle cannot supply Glucose to other
organs despite having Glycogen
...
GNG is an anabolic process and occurs in the
liver 80%, kidneys 15%, gut 5%
...

It is GNG which maintains the blood/glucose levels during periods of starvation/fasting and so it is of great physiologic importance
...
g Red blood cells, nervous tissue/brain, Kidney medulla and testes
...

GNG is technically a “reverse” of glycolysis where glucose is synthesised, not catabolised
...

The main substrates for the GNG pathway include lactate, pyruvate, glycerol (from lipid metabolism), intermediates from the Krebs
cycle, and amino acids
...

Reaction steps: Seven of the reactions of glycolysis are reversible and are used in gluconeogenesis
...

First step: ATP required, endergonic
...
Requires 2 mitochondrial enzymes, pyruvate
carboxylase (Pyruvate is carboxylated to form Oxaloacetate, this enzyme is only found in the mitochondria, so the pyruvate must
travel there) and PEP carboxykinase (Uses GTP to decarboxylase Oxaloacetate to PEP)
...
Carboxylation of Pyruvate
...

1
...

2
...
Elevated levels of acetyl CoA may signal one of several metabolic
states in which the increased synthesis of oxaloacetate is required
...
At low levels of acetyl COA, pyruvate carboxylase is largely inactive and
pyruvate is primarily oxidized in the TCA cycle
...
transport of Oxaloacetate to the Cytosol
Oxaloacetate, formed in mitochondria, must enter the cytosol where the other enzymes of gluconeogenesis are located
...
There are 3 pathways through which this may occur;
1
...


Oxaloacetate undergoes transamination to Aspartate

3
...
)

These products are transported to the cytosol
...
Decarboxylation of Cytosolic Oxaloacetate
Oxaloacetate is decarboxylated and phosphorylated in the cytosol by PEP-carboxykinase
...
PEP then enters the reversed reactions of glycolysis until it forms fructose 1, 6- bisphosphate
...
13)
D
...
This fructose 6-phosphate is isomerised to glucose 6phosphate in the reversible reaction number 2 of glycolysis
Regulation of Gluconeogenesis
The main regulatory step involved: pyruvate carboxylase reaction
...

Glucagon and cortisol are the hormones which stimulate GNG in order to return blood/glucose levels to normal
...

As you know there are 10 reactions in total and 3 of them are irreversible
...

1
...
Enzyme: Hexokinase
...
High amounts of glucose6-phosphate will inhibit hexokinase
...


2
...
Main regulatory step! Enzyme: PFK-1 (Phosphofructokinase) converts Fructose-6-phosphate
to Fructose 1,6 bisphosphate (glycolysis)
...

In Gluconeogenesis the opposite reaction occurs (Fructose 1,6 bisphosphate converts to Fructose-6-phosphate by enzyme
Fructose 1,6-bisphosphotase) This enzyme is inhibited by a product Fructose 2,6-bisphosphate and insulin
...


GLYCOLYSIS (Phosphofructokinase)
GLUCONEOGENESIS (Fructobisphosphatase)
ATP inhibits
F2,6-Bisphosphate inhibits
Citrate inhibits
Insulin inhibits
AMP stimulates
Glucagon stimulates
F2,6-Bisphosphate stimulates
Irreversible Kinase Reaction #10
...
(Glycolysis)
In Gluconeogenesis the reaction has 2 steps, 1- Pyruvate to Oxaloacetate and 2-Oxaloacetate to PEP
...
Hormonal control of this enzyme is what controls this
overall reaction step #10 in gluconeogenesis
...

High amounts of Fructose 1,6-bisphosphate stimulate PK
...


GLUCONEOGENESIS (PEP-CK)
Glucagon will stimulate PEP-CK

High amounts of Camp-dependent-proton-kinase will
stimulate PEP-CK
...


Topic 19 | The Pentose Phosphate pathway
...

There are 2 major pathways in the human body which catabolise glucose – Glycolysis and Pentose-phosphate pathways (PPP)
...
However, this pathway does oxidise glucose and under certain conditions can completely
oxidise glucose to CO2 and water
...
To generate reducing equivalents, in the form of NADPH, for reductive biosynthesis reactions within cells
...
To provide the cell with ribose phosphates (R5P) for the synthesis of the nucleotides, ATP, NAD, CoA, FAD and nucleic acids
...
Although not a significant function of the PPP, it can operate to rearrange the carbon skeletons of dietary carbohydrates,
monosaccharides- ribose and “non-hexoses” to glycolytic/gluconeogenic intermediates, e
...

The PPP has 2 stages: 1) Irreversible glucose oxidation to Pentose-5-phosphate AND production of NADPH2
...

The reactions of fatty acid biosynthesis and steroid biosynthesis utilise large amounts of NADPH
...

30% of the oxidation of glucose in the liver occurs via the PPP
...
The conversion of ribonucleotides to deoxyribonucleotides (through
the action of ribonucleotide reductase) requires NADPH as the electron source, therefore, any rapidly proliferating cell needs large
quantities of NADPH, and such is seen in cancerous cells
...


Reactions of the Pentose Phosphate Pathway: The first three reactions of the PPP are referred to as the oxidative portion and are the
reaction that yield NADPH
...


G6PDH = glucose-6-phosphate dehydrogenase
...

PGD = 6-phosphogluconate dehydrogenase
...

RPIA = ribose-5-phophate isomerase / phosphopentose isomerase
Transketolase and Transaldolase
...
The pentose phosphate pathway has both an oxidative and a nonoxidative arm
...
The reactions catalysed by glucose-6-phosphate dehydrogenase (G6PDH) and 6phosphogluconate dehydrogenase (PGD) both generate one mole of NADPH for every mole of glucose-6-phosphate that enters
the PPP
...

The non-oxidative reactions of the PPP are primarily designed to generate ribose-5-phosphate (R5P)
...

The primary enzymes involved in the non-oxidative steps of the PPP are transaldolase and transketolase
...
Like other enzymes that transfer two-carbon groups, transketolase requires thiamine pyrophosphate (TPP) as a co-factor
in the transfer reaction
...

The net result of the PPP, if not used solely for R5P production, is the oxidation of G6P, a six-carbon sugar, into a five-carbon sugar
...
The six-carbon sugars can be recycled into the pathway in the form of G6P, generating more
NADPH
...
Alternatively, it can be utilized by the gluconeogenic enzymes to generate more six-carbon sugars, fructose-6-phosphate
or glucose-6-phosphate
...

Blood glucose can be obtained from three primary sources: the diet, degradation of glycogen, and gluconeogenesis
...

Glycogen is considered the principal storage form of glucose and is found mainly in the liver and muscle
...

Glycogen is a polymer of glucose residues linked by

-(1,4)- and

-(1,6)-glycosidic bonds
...
It’s a good
source of fuel for anaerobic activity as it doesn’t require O2 for breakdown – These properties make it an efficient storage molecule
...

GLYCOGENESIS - activated when the body is in a state of rest or during high glucose level in the blood
...
Glucose is first converted into glucose-6-phosphate by the action of glucokinase
...




Glucose is converted into glucose-6-phosphate by glucokinase in liver or by hexokinase in muscles
...
(Passing through the obligatory
intermediate glucose-1,6-bisphosphate
...
Pyrophosphate is formed,
which is later hydrolysed by pyrophosphatase into two phosphate molecules
...
Initially, about eight UDP-glucose molecules are added to each tyrosine residue by glycogenin, forming

(1 4)

bonds
...


Branches are made by glycogen branching enzyme (also known as amylo- (1:4)
the end of the chain onto an earlier part via
more

(1:6)transglycosylase), which transfers

-1:6 glycosidic bond, forming branches, which further grow by addition of

-1:4 glycosidic units
...

Degradation of stored glycogen, occurs through the action of glycogen phosphorylase
...
The product of this reaction is glucose-1-phosphate
...
The glucose is removed from glycogen is an activated state, i
...
phosphorylated and this occurs without ATP hydrolysis
...
The concentration of Pi in the cell is high enough to drive the equilibrium of the reaction in the favourable direction
since the free energy change of the standard state reaction is positive
...
Therefore, any glucose released
from glycogen stores of muscle will be oxidized in the glycolytic pathway
...


Biochemistry  2015  
 

21
...
   Glycogenolysis
...
  Major   regulatory   mechanisms:   induction   of  
enzyme   synthesis,   changes   in   enzyme   activity   by   phosphorylation   and  
dephosphorylation,   allosteric   control
...
   
Reciprocal   regulation   of   glycogen   synthase   and   glycogen   phosphorylase
...
 
 

Regulation  of  Glycogen  Metabolism  
Stores  of  readily  available  glucose  to  supply  the  tissues  with  an  oxidisable  energy  source  are  found  
principally  in  the  liver,  as  glycogen
...
    A   second   major   source   of   stored   glucose   is   the   glycogen   of   skeletal  
muscle
...
 
Regulation  is  performed  in  a  similar  was  as  that  of  gluconeogenesis  and  glycolysis,  on  three  different  
levels:  
1
...
Enzyme  phosphorylation/  dephosphorylation  
3
...
 
i
...
    In   diabetes,   the   quantity   of  
glycogen  synthase  decreases
...



Mechanism  of  covalent  modification  and  allosteric  control  
Main  regulatory  enzyme  of  glycogen  synthesis:  glycogen  synthase  



Main  regulatory  enzyme  of  glycogen  degradation:  glycogen  phosphorylase  



Both   enzymes   regulated   by   phosphorylation/dephosphorylation   mechanism,   as   well   as  
allosterically  



Control  of  glycogen  metabolism  involves  a  cascade  of  events  where  an  enzyme  catalyses  the  
modification   of   a   second   enzyme,   which  
in   turn   catalyses   the   modification   of   a  
third,  and  so  on  



Regulation   of   glycogen   phosphorylase  
and  glycogen  synthase  under  the  control  

1  
 

Biochemistry  2015  
 
of  hormones:  glucagon,  epinephrine,  cortisol  and  insulin  


GLUCAGON   AND   EPINEPHRINE   act   as   extracellular   regulators:   their   mechanism   of   action  
includes  second  messengers  cAMP,  IP3  and  DAG  



Cells   possess   different   adrenergic   receptors:   α1,  2,   β1,  2,  3
...
    First   messenger   is   the   hormone   molecule   (does   no  
penetrate  cell  membrane)
...
    cAMP   may   be   degraded   by   phosphodiesterase,   which   is  
activated  by  insulin  



When  epinephrine  binds  α2  adrenoceptors,  adenylate  cyclase  is  inhibited,  which  results  in  
the   activation   of   glycogen   synthase   and   inactivation   of   glycogen   phosphorylase   a
...
 



Epinephrine  on  α1:  phospholipase  C  is  activated,  which  catalyses  the  hydrolysis  of  membrane  
phospholipid  phosphatidylinositol-­‐diphosphate  into  2  products;  inositol  triphosphate  IP3  and  
diacylglycerol  DAG  



IP3  opens  calcium  ion  channels  in  the  ER,  thus  increasing  its  concentration  in  the  cytoplasm,  
where   calcium   binds   to   calmodulin
...
   DAG  activates  PK-­‐C  

Pathology  of  Glycogen  Metabolism  




The   deficiency   impairs   the   ability   of   the   liver   to   produce   free   glucose   from   glycogen   and  
from  gluconeogenesis
...
 This  can  lead  
to  enlargement  of  both
...
 It  is  caused  by  an  accumulation  of  glycogen  in  the  lysosome  
due   to   deficiency   of   the   lysosomal   acid   alpha-­‐glucosidase   enzyme
...
 C
...
 



The   build-­‐up   of   glycogen   causes   progressive   muscle   weakness   (myopathy)   throughout   the  
body   and   affects   various   body   tissues,   particularly   in   the   heart,   skeletal   muscles,   liver   and  
nervous  system  



Type   V:   Glycogen   storage   disease   type   V   (GSD-­‐V)   is   a   metabolic   disorder,   more   specifically   a  
glycogen   storage   disease,   caused   by   a   deficiency   of   myophosphorylase
...
 



 

Type   I:   Glycogen   storage   disease   type   I   (GSD   I)   or   von   Gierke's   disease,   is   the   most   common  
of  the  glycogen  storage  diseases
...
 
 

3  
 

Biochemistry  2015  
 

23
...
   Control  of  Blood  Glucose  
Levels   in   Different   Conditions:   Well   Fed,   Fasting,   Prolonged  
Starvation
...
 
Regulation  of  Carbohydrate  Metabolism  


Glucoregulation   is   the   maintenance   of   steady   levels   of   glucose   in   the   body;   it   is   part   of  
homeostasis,  and  so  keeps  a  constant  internal  environment  around  cells  in  the  body
...
 rise  by  5mM  
glucose  conc
...
 
rise  in  fatty  acid  conc
...
 

o

GLUT-­‐2:   β   cells,  
liver,  
kidney,  
intestinal  epithelium  

o

GLUT-­‐3:  neurons  

o

SGLT-­‐1:   intestinal  
epithelium,  kidney  

o

SGLT-­‐2:  kidney  

Processes  Affected  by  Insulin  and  Glucagon  
• Muscle:  insulin  stimulates  glucose  uptake  and  consumption  


Liver:  glucagon  stimulates  glucose  synthesis  and  export  

PROCESS  
glucose  uptake  (muscle  and  adipose)  
   
gluconeogenesis  (liver)  
   
glycogenesis  (liver  and  muscle)  
   
glycogenolysis  (liver  and  muscle)  

Insulin  
+  
   
-­‐  
   
+  
   
-­‐  

Glucagon  
0  
   
+  
   
-­‐  
   
+  

Actions  of  Insulin  and  Glucagon  
Insulin:  
1
...
Activates  glycogen  synthase  and  inactivates  glycogen  phosphorylase  (liver  and  muscle)  
3
...
Insulin  stimulates  glucose-­‐6-­‐P  to  pyruvate  via  effect  on  phosphofructokinase  1  
b
...
    FAs   made   in   liver   are   converted   to   TAGs   and  
transported  in  VLDLs  to  fat  cells  
c
...
    Note-­‐   stored   fat  
derived  from  glucose  
Glucagon:  
1
...
mM  
2
...
Inhibits   liver   glycolysis   and   stimulates   gluconeogenesis   (by   lowering   levels   of   fructose-­‐2,6-­‐  
bisphosphate  and  inhibiting  pyruvate  kinase  
4
...
    Adrenaline   acts   on   muscle  
(glycogenolysis),  liver  (glycogenolysis)  and  adipose  tissue  (lipolysis)
...
8  mmol/L  (140  mg/dL)  or  slightly  more  



Fasting:   normal   blood   glucose   level   (tested   while   fasting)   for   non-­‐diabetics,   should   be  
between   3
...
5  mmol/L   (70   to   100  mg/dL)
...
5  mmol/L  (100  mg/dL)  



Prolonged   starvation:   blood   glucose   levels   will   remain   relatively   stable   during   prolonged  
starvation
...
 At  first,  the  brain  continues  to  use  glucose,  because,  if  
a   non-­‐brain   tissue   is   using   fatty   acids   as   its   metabolic   fuel,   the   use   of   glucose   in   the   same  
tissue   is   switched   off
...
  This   high   blood   sugar   produces   the   classical  
symptoms   of   polyuria   (frequent   urination),   polydipsia   (increased   thirst)   and   polyphagia   (increased  
hunger)
...
  (Also   referred   to   as   insulin-­‐dependent   diabetes   mellitus,   IDDM   for   short,   and  
juvenile  diabetes
...
  (Formerly   referred   to   as   non-­‐insulin-­‐
dependent  diabetes  mellitus,  NIDDM  for  short,  and  adult-­‐onset  diabetes
...
 It  may  precede  development  of  type  2  DM
...
    Classification   of   Lipids
...
   
Synthesis  of  Chylomicrons
...
  Digestion   of   lipids,   emulsifying   (role   of   bile  
salts),   hydrolysis   of   various   types   of   lipids
...
 
Absorption   of   lipids
...
  Synthesis   of  
chylomicrons
...
  Excretion   of  
chylomicrons   from   intestinal   cells
...
 
Chylomicrons   -­‐   synthesis   and   importance
...
  Structure  
of  apolipoprotein  B48
...
 

Classification  


Fatty  acids  and  triacylglycerols:  FAs  stored  as  TAGs,  serve  as  fuel  



Glycerophospholipids  and  sphingolipids:  in  membranes  and  in  blood  lipoproteins  



Eicosanoids:  PUFAs  containing  20  carbon  atoms  form  the  eicosanoids;  regulate  many  cellular  
processes  



Cholesterol,   bile   salts,   steroid   hormones:   cholesterol   stabilises   phospholipid   bilayer;   also  
serves  as  precursor  of  bile  salts  and  steroid  hormones  



Fat-­‐soluble   vitamins:   lipids   involved   in   various   functions   such   as   vision,   growth,  
differentiation,  blood  clotting,  calcium  metabolism,  etc
...
   Route,  to  a  certain  extent,  depends  on  the  chain  length  of  the  FAs  

Lingual  and  Gastric  Lipases  
• Preferentially  hydrolyse  short  and  medium  chain  FAs  (12C  or  less)
...
   This  means  it  is  suspended  
in  small  particles  by  bile  salts  


Bile   salts   are   synthesised   in   the   liver   and   secreted   via   the   gall   bladder   into   the   intestinal  
lumen
...
   Emulsification  is  not  digestion  per  se;  it  greatly  increases  the  
surface  area  of  the  fat  to  be  attacked  by  digestive  enzymes  from  the  pancreas  
8  

 

Biochemistry  2015  
 
o

Solubilisation  and  transport  of  lipids  in  an  aqueous  environment:  bile  acids  are  lipid  
carriers  and  are  able  to  solubilise  many  lipids  by  forming  micelles
...
    Colipase  
binds   to   dietary   fat   and   t   the   lipase,   causing   it   to   be   more   active
...
   30-­‐40%  of  lipids  are  digested  
completely,  40-­‐50%  digested  into  2  MAG,  5-­‐10%are  non-­‐digested  TAGs  



Pancreas  also  produces  esterases  and  phospholipases  



Pancreatic   phospholipase   produced   in   form   of   pro-­‐phospholipase   A2   (pro-­‐   PLA2)
...
    Active   pro-­‐   PLA2   hydrolyses   FAs   from   position   2   of   the   glycerol  
moiety,  converting  phospholipids  into  lyso-­‐phospholipids,  which  are  powerful  detergents  



Pancreatic  esterase  hydrolyses  cholesterol  esters  (CEs)  into  cholesterol  and  FA  



Deficiency  of  digestive  enzymes  leads  to  steathorea  

Absorption  


FAs,   lyso-­‐phospholipids   and   2   MAGs   are   packed   into   micelles
...
  Also   packaged  
into  newly  forming  apoB48  lipoprotein  

9  
 

Biochemistry  2015  
 


Continued   lipidation   in   the   ER   inflates   the   particle,   requiring   stabilisation   of   its   surface   by  
phospholipids  
and   apoA-­‐IV
...
    The   apoA-­‐1   originates  
both   from   local   intestinal   synthesis   and  
from   plasma
...
    TAGs   are   transported   by   lipoprotein  
particles  because  they  are  insoluble  in  water  



General  structure  of  lipoprotein:  
10  

 

Biochemistry  2015  
 
o
o



Core  consisting  of  a  droplet  of  TAGs  and/or  cholesterol  esters  (CEs)  
Surface   monolayer   of   phospholipid,   unesterified   cholesterol   and   specific   proteins  
(apolipoporteins)  

Lipoproteins  differ  in  content  of  protein  and  lipids,  and  classified  depending  on  their  density:  
o

CM:  largest,  low  density
...
   Enter  blood  via  thoracic  duct  



Transport  of  dietary  lipids  in  the  blood  performed  by  CMs  

11  
 

Biochemistry  2015  
 
 

25
...
   TAG  Transport  by  Lipoproteins
...
  Importance   of   the   liver   in   metabolism   of   chylomicrons  
Lipid   synthesis   and   VLDL   in   the   liver
...
 
Transport   of   endogenous   lipids   to   peripheral   tissues
...
  Abnormalities   in   the   synthesis   of   VLDL   -­‐   fatty   liver
...
    LPL   is   produced   by  
adipose   tissue,   muscle   cells,   spleen,   lungs,   and   neonatal   liver
...
    Reaction   converts   polar   cholesterol   into   non-­‐polar,   and   thus   removes  
cholesterol  from  membrane  into  interior  



Abnormalities  of  lipoprotein  metabolism  cause  various  hypo-­‐  or  hyperlipoproteinemias
...
 



Chylomicrons   and   VLDL   deliver   TAG   to   cells   in   the   body
...
  Chylomicrons   are   synthesized   by   enterocytes  
from  lipids  absorbed  in  
the   small   intestine
...
  The   function  
of  these  lipoproteins  is  
to   deliver   energy-­‐rich  
triacylglycerol  (TAG)  to  
cells   in   the   body   (pink  
pathway)
...
  This   enzyme   digests   the   TAG   to   fatty   acids   and  
monoglycerides,   which   can   then   diffuse   into   the   cell   to   be   oxidized,   or   in   the   case   of   an  
adipose  cell,  to  be  re-­‐synthesized  into  TAG  and  stored  in  the  cell
...
  These   then   pass  
from  the  intestinal  lumen  into  the  enterocyte,  where  they  are  re-­‐esterified  
to   form   triacylglycerol
...
 These  are  then  released  by  exocytosis  from  enterocytes  into  
lacteals,   lymphatic   vessels   originating   in   the   villi   of   the   small   intestine,   and  
are   then   secreted   into   the   bloodstream   at   the   thoracic   duct's   connection  
with   the   left   subclavian   vein
...
 
The  main  apolipoprotein  component  is  apolipoprotein  B-­‐48  (apo  B-­‐48)
...
 The  HDL  donates  apolipoprotein  C-­‐II  (APOC2)  and  
apolipoprotein  E  (APOE)  to  the  nascent  chylomicron  and,  thus,  converts  it  to  
a  mature  chylomicron  (often  referred  to  simply  as  "chylomicron")
...
 

Chylomicron  remnant:  
§

Once   triglyceride   stores   are   distributed,   the   chylomicron   returns   APOC2   to  
the   HDL   (but   keeps   APOE),   and,   thus,   becomes   a   chylomicron   remnant,   now  
only  30–50  nm
...
 

Metabolism  of  VLDL  


VLDL   synthesis   occurs   in   the   liver
...
    Each   VLDL   particle  
contains  one  apoB100  molecule  



Main   function:   transport   TAG   form   liver   to  
other  tissues  



2  sources  of  TAG  in  the  liver:  
o

FAs   synthesised  
carbohydrates  

from  

o

FAs  taken  up  by  the  liver  

o

dietary  

 
14  

 

Biochemistry  2015  
 


VLDL  interacts  with  HDL  and  receives  additional  apoC-­‐II  and  apoE
...
   VLDL  converted  to  IDL  



Some   IDL   taken   up   by   liver,   because   cells   need   more   TAG   than   cholesterol
...
   The  process  involves  the  discharge  of  more  TAG  catalysed  by  LPL  



Most  of  the  apoC-­‐II  and  apoE  are  lost  during  conversions  of  VLDL  to  IDL  and  IDL  to  LDL  



The  LDL  receptor  can  still  recognise  and  take  up  LDL  containing  only  apoB100  



Uptake   of   LDL   depends   on   recognition   by   an   apoB100/apoE   receptor
...
 



By  these  processes,  CE  is  delivered  from  LDL  to  the  live  and  to  extrahepatic  tissues  

15  
 

Biochemistry  2015  
 
 

26
...
 Structure  of  apolipoprotein  B100
...
 Transport  cholesterol  to  peripheral  tissues
...
 Exchange  of  HDL:  synthesis;  intravascular  exchange  of  lipid  
components  of  lipoproteins;  esterification  of  cholesterol  -­‐  the  role  of  LHAT,  
participation  in  the  transport  of  HDL  cholesterol
...
 Hypercholesterolemia
...
  The   cholesterol   pool   in   liver   cells   also   receives   the  
dietary   cholesterol,   which   is   contained   in   the   chylomicron   remnants   that   are   formed   through   the  
extraction  of  triacylglycerol  from  chylomicrons  by  lipoprotein  lipase
...
  Like  
chylomicrons,  VLDL  interacts  
with   lipoprotein   lipase   and  
thereby  
turns  
into  
intermediate   (IDL)   and   then  
low   density   lipoprotein  
(LDL)
...
  Excess   cholesterol   is  
exported   from   the   cell   by   an   active   transporter   (ABCA1)   and   delivered   to   high   density   lipoprotein  
(HDL),  which  then  carries  it  back  to  the  liver
...
 About  70%  of  plasma  cholesterol  occurs  in  this  form
...
  Uptake   of   cholesterol   into   cells   occurs   when   lipoprotein   binds   to  
LDL  receptors  on  the  cell  surface
...
  Disorders   involving   a   defect   in   or   lack   of   LDL   receptors   are  
usually   characterised   by   high   plasma   cholesterol   levels
...
  This   is   the   case   in   the   inherited  
disorder  familial  hypercholesterolemia
...
  They   are   composed   of   50%   protein,   with  
phospholipid   and   cholesterol   as   the   remainder
...
 The  role  of  HDL  is  to  transport  excess  cholesterol  from  the  tissues  (including  the  
arterial  wall)  to  the  liver  for  disposal
...
   Seems  to  have  2  different  tasks:  
o
o



Collect  cholesterol  from  plasma  membrane  and  issue  to  the  extracellular  medium  
Allow  cholesterol  esterification  by  LCAT  (lecithin  acyl  transferase)  

Cholesterol  efflux  from  membranes  depends  on  lipid  content  of  apolipoprotein  (HDL)
...
   Conversion  to  HDL  precursors  

o

Cholesterol  issued  from  the  cells  of  peripheral  tissues,  either  by  passive  diffusion  or  
through   the   action   of   recently   identified   ATP   dependent   transmembrane  
transporter:  ATP  binding  cassette  (ABC1)
...
    After   the   cholesterol   becomes   associated  
with  HDL,  LCAT  catalyses  the  conversion  of  cholesterol  to  CE  

o

Through   selective   uptake   of   CE   rich   HDL,   mediated   by   hepatic   receptor   SRB1  
scavenger  receptor
...
 

o

The   enzyme   is   able   to   remodel   HDL   through   the   hydrolysis   of   surface   phospholipids,  
thus  allowing  CE  to  flow  from  the  lipoprotein  core  to  the  plasma  membrane  

 
LCAT  Reaction  
• The  HDL  particle  contains  the  enzyme  lecithin  cholesterol  acyltransferase  or  LCAT  for  short,  
which  
converts  
cholesterol  
to  
cholesterol  esters
...
  The  
transfer   of   one   acyl  
chain   from   a   lecithin  
(phosphatidylcholine)  
18  

 

Biochemistry  2015  
 
molecule   to   cholesterol   produces   a   cholesterol   ester   and   lysolecithin
...
 


Cholesterol  also  undergoes  esterification  as  it  is  packaged  into  chylomicrons  and  VLDL  inside  
intestinal  and  liver  cells,  respectively
...
  Atherosclerosis   can   begin   to   develop   in  
adolescence  and  progress  without  any  symptoms  for  many  years
...
 



Hyperlipidaemia  is  a  common  and  treatable  cause  of  atherosclerosis
...
 

 

 
 

19  
 

Biochemistry  2015  
 
 

27
...
   Regulation  of  Lipolysis  and  Lipogenesis
...
  Participation   of   adipolytic   lipase,  
hepatic   lipase,   lipiproteinlipase   and   digestive   enzymes
...
  General   synthetic   route,   the   synthesis   in   adipose  
tissue   and   the   intestinal   cells
...
  Rapid  
hormonal   control   by   phosphorylation   /   dephosphorylation   of   enzymes,   slow  
hormonal   control
...
  Metabolism   of   glycerol
...
  Natural   uncoupling   agents   -­‐   fatty  
acids,   bilirubin,   thyroid   hormones,   UCP
...
)  enclosed  by  a  monolayer  
of   phospholipids   and   hydrophobic   proteins,   such   as   the   perilipins   in   adipose   tissue   or   oleosins   in  
seeds
...
  They   are   not   unique   to  
animals  and  plants  as  Mycobacteria  and  yeasts  have  similar  lipid  inclusions
...
  However,   lipid   droplets   may   also   serve   as   a  
protective  agency  to  remove  any  excess  of  biologically  active  and  potentially  harmful  lipids  such  as  
free   fatty   acids,   diacylglycerols,   cholesterol   (as   cholesterol   esters),   retinol   esters   and   coenzyme   A  
esters
...
    Main   lipases:   LPL,   pancreatic   lipase,  
adipolytic  and  liver  lipase
...
   
Attached  to  the  luminal  surface  of  endothelial  cells  in  capillaries  



Pancreatic   lipase   is   a   TAG   lipase
...
   Converts  IDL  to  LDL  



Adipolytic  lipase  hydrolyses  TAG  to  DAG  and  DAG  to  MAG  

20  
 

Biochemistry  2015  
 

Synthesis  of  TAGs  


Conducted  mainly  in  liver,  adipose  tissue  and  intestine  



3  different  pathways  of  synthesis:  general,  adipose  and  intestinal  

General  Pathway  
• Occurs  in  liver,  kidneys,  brown  adipose  tissue,  mammary  glands  and  intestines  


Pathway   starts   with   glycerol   3   phosphate   and  
produces  intermediate  phosphatidic  acid  



Pathway   starts   with   glycerol   phosphorylation   by  
specific  glycerol  kinase  



TAG,   synthesised   in   the   liver,   is   packaged   with  
cholesterol,  phospholipids  and  proteins  to  form  VLDL  

Adipose  Tissue  Pathway  
• Adipose   tissue   lacks   glycerol   kinase   and   can   only  
produce   glycerol   phosphate   from   glycerol   via  
dihydroxyacetone  phosphate  


DHAP   is   reduced   by   glycerol   phosphate  
dehydrogenase,   producing   glycerol   3   phosphate
...
   Trigger  GPCRs  which  activate  adenylate  cyclase  



Insulin   stimulates   phosphoprotein   phosphatase   PRP!,   which   dephosphorylates   lipase   and  
makes  the  enzyme  inactive  



Insulin  also  stimulates  phosphodiesterase  activity  that  lowers  levels  of  cAMP
...
   
cAMP   dependent   PKA   phosphorylates   perilipin   A,   causing   hormone   sensitive   lipase   in   the  
cytosol   to   move   to   the   lipid   droplet   surface
...
   These  2  phosphorylations  cause  about  a  50-­‐fold  increase  in  fat  metabolism  

Thermogenesis  


Thermogenesis  is  the  process  of  heat  production  in  organisms  



One   method   to   raise   temperature   is   through   shivering
...
 It  is  not  100%  efficient,  meaning  while  some  of  the  energy  becomes  heat,  a  
portion   is   transferred   to   the   kinetic   energy   that   produces   its   characteristic   muscular  
twitches
...
 Shivering  is  the  process  by  which  the  body  temperature  
of   hibernating   mammals   (such   as   some   bats   and   ground   squirrels)   is   raised   as   these   animals  
emerge  from  hibernation  



Non-­‐shivering  thermogenesis  occurs  in  brown  adipose  tissue  (brown  fat)  that  is  present  in  all  
eutherians  (swine  being  the  only  exception  currently  known)
...
 This  uncouples  oxidative  phosphorylation,  and  the  energy  from  the  proton  motive  
force   is   dissipated   as   heat   rather   than   producing   ATP   from   ADP,   which   would   store   chemical  
energy  for  the  body's  use
...
 



The  low  demands  of  thermogenesis  mean  that  free  fatty  acids  draw,  for  the  most  part,  on  
lipolysis  as  the  method  of  energy  production
...
  Some   hormones,   such   as   norepinephrine   and   leptin,   may   stimulate  
thermogenesis   by   activating   the   sympathetic   nervous   system
...
 β-­‐Oxidation  of  FAs  with  an  Even  Number  of  Carbon  Atoms
...
 
Sources   of   fatty   acids   in   the   body
...
  β-­‐
oxidation
...
  Transport   of   activated   fatty   acids   across  
the   mitochondrial   membrane   -­‐   carnitine   shuttle
...
  Energetic   balance
...
 Pathology  -­‐  deficiency  of  acyl-­‐
CoA  dehydrogenase
...
 
Most  FAs  present  in  human  cells  are  long  chain
...
   The  FAs  form  complexes  with  albumin  in  the  blood,  and  are  taken  up  by  
muscle,  kidney  and  other  tissues;  where  ATP  is  generated  by  their  oxidation  to  carbon  dioxide  and  
water
...
   On  entering  
the  cytosol,  free  FAs  are  bound  by  a  FABP
...
   FAs  are  oxidised  into  activated  2C  molecules;  
acetyl  CoA  

Activation  and  Membrane  Transport  


Free   fatty   acids   cannot   penetrate   any   biological   membrane   due   to   their   negative   charge
...
  Once   in   the   cytosol,   the   following   processes  
bring  fatty  acids  into  the  mitochondrial  matrix  so  that  beta-­‐oxidation  can  take  place
...
 



If  the  fatty  acyl-­‐CoA  has  a  long  chain,  then  the  carnitine  shuttle  must  be  utilized:  
o

Acyl-­‐CoA   is   transferred   to   the   hydroxyl   group   of   carnitine   by   carnitine  
palmitoyltransferase   I,   located   on   the   cytosolic   faces   of   the   outer   and   inner  
mitochondrial  membranes
...
 

24  
 

Biochemistry  2015  
 
o



Acyl-­‐carnitine   is   converted   back   to   acyl-­‐CoA   by   carnitine   palmitoyltransferase   II,  
located   on   the   interior   face   of   the   inner   mitochondrial   membrane
...
 

If  the  fatty  acyl-­‐CoA  contains  a  short  chain,  these  short-­‐chain  fatty  acids  can  simply  diffuse  
through  the  inner  mitochondrial  membrane
...
The process
consists of 4 steps
...
A long-chain fatty acid
is dehydrogenated to create a
trans double bond between C2
and C3
...
It uses FAD as an electron acceptor and it is reduced to FADH2
...
Trans-delta2-enoyl CoA is hydrated at the double bond to produce L-B-hydroxyacyl CoA
by enoyl-CoA
hydratase
...
L-B-hydroxyacyl CoA
is dehydrogenated
again to create Bketoacyl CoA by Bhydroxyacyl CoA
dehydrogenase
...

4
...

Thiolase enzyme
catalyses the
reaction when a new

25  
 

Biochemistry  2015  
 
molecule of coenzyme A breaks the bond by nucleophilic attack on C3
...
The
process continues until all of the carbons in the fatty acid are turned into acetyl CoA
...
However, some tissues such as
the adrenal medulla do not use fatty acids for their energy requirements, but instead use
carbohydrates
...
   Most  severe:  LCA  type  
which  leads  to  the  syndrome  of  sudden  death  in  infants
...
Oxidation of Fatty Acids with an Odd Number of Carbon Atoms
...
Role of vitamin B12
...
Fatty acids that enter betaoxidation with an even number of carbons are converted entirely to acetyl-CoA, with the last round
producing two acetyl-CoA molecules from one four carbon fatty acid
...
Fatty acids that have an
odd number of carbons present a special challenge
...
Propionyl-CoA is not a
common metabolic intermediate in other pathways, so it must be converted into something else to
be effectively metabolised
...
PropionylCoA is converted to succinyl-CoA, an intermediate in the Kreb's cycle
...
Mutation of propionyl-CoA
carboxylase has been observed to cause a genetic condition called propionic acidemia
...


Lipolysis is carried out by lipases
...

Beta oxidation splits long carbon chains of the fatty acid into acetyl CoA, which can eventually
enter the TCA cycle
...

All B vitamins helps the body convert food (carbohydrates) into fuel (glucose), which is used to
produce energy
...
B complex vitamins are needed for healthy skin, hair, eyes, and liver
...

All B vitamins are water-soluble, meaning that the body does not store them
...
Vitamin B12 also works
closely with vitamin B9, also called folate or folic acid, to help make red blood cells and to help
iron work better in the body
...

Vitamins B12, B6, and B9 work together to control blood levels of the amino acid homocysteine
...
However, researchers aren't sure
whether homocysteine is a cause of heart disease or just a marker that indicates someone may have
heart disease
...
That may be because their diets are not as healthy or because they have less
stomach acid, which the body needs to absorb B12
...
Severe deficiency of B12 causes nerve damage
...
Ketogenesis and Ketolysis
...
Ketoacidosis
Ketone bodies are alternative energy sources for skeletal muscles, cardiac muscle, smooth muscles
of the digestive system and the kidney cortex
...

Ketone body is the nonsystematic name for acetoacetate, Beta-hydroxylbutyrate and acetone
...

Ketogenesis occurs exclusively in the liver’s mitochondria
...

Ketone bodies are synthesised from acetyl-CoA by condensation of two molecules through the
reversion of the last reaction of beta-oxidation
...

Acetoacetyl CoA reacts with acetyl CoA to form beta-hydroxyl-beta-methylglutaryl-CoA
...
This synthesis involves condensation and hydrolysis and this
reaction is exergonic and unidirectional
...

Acetoacetate can be reduced by NADH to form Beta-hydroxybutyrate
...
Acetoacetate and hydroxybutyrate are both ketone bodies formed during
the catabolism of a few amino acids
...


Ketolysis - After release from the liver into the circulation, ketone bodies are metabolised by
mitochondria of extra-hepatic cells
...
Acetoacetate reacts with succinyl-CoA, an intermediate of the Krebs
cycle, to form acetoacetyl-CoA and succinate - a reaction catalysed by thioforase
...
Ketone
bodies are able to change the regulation of carbohydrate metabolism, inhibiting PDH and pyruvate
kinase reactions, hence stimulating the conversion of pyruvate into glucose
...

In starvation and diabetes increased glucagon levels stimulates lipolysis leading to an elevation of
FFA concentration in serum and as a consequence to increased ketone body production by 12 mmol/
L
...
Fatty acids are liberated from adipose tissue and are
transported to the liver as a complex with serum albumin
...

Glucagon stimulates ketogenesis inhibiting the synthesis of fatty acids or triacylglycerol (TAG) thus
decreasing the consumption of fatty acids in the cytoplasm
...

Insulin effects are opposite to those of glucagon
...

Ketoacidosis occurs in adults if they consume less than 100g/day for a prolonged period
...

However, the liver can oxidise more fatty acids than it needs and thus metabolises it to acetyl-CoA
in excess of it’s needs and then synthesises acetoacetate and hydroxybutyrate (ketone bodies) for
export into other tissue as an additional metabolic fuel
...

When starving to slim, blood glucose drops as this source of energy is being used
...
Free fatty acids increases
from the fed to fasting state but then do not rise further
...

Diabetic ketoacidosis is the production of inordinate amounts of ketone bodies in diabetes resulting
in diabetic ketoacidosis
...
The excretion of ketones in the urine is called
ketouria
...
Fatty acid biosynthesis
...

Substrates: 1 Acetyl CoA which is derived from carbohydrate in PDH reaction, from BetaOxidation and amino acid degradation
...
Source of NADPH2 in
the liver is Pentoso-Phosphate-pathway and adipose tissue it is malic-reaction
...

Strategy: Biosynthesis of FA is a cyclic process, Malonyl-CoA is a 3 C precursor of the 2
C fragments that are incorporated stepwise during fatty acid biosynthesis
...

Transport of Acetyl-CoA - produced in the mitochondria - FA synthesis is a cytoplasmic
process - acetyl-CoA must be transported to the cytoplasm
...
This is exported from the mitochondria by means of antiport
system
...

The malate is transported into the mitochondrion
...

A second route for cytosolic malate is malic-reaction: Oxidative decarboxylation to
pyruvate, CO2, NADPH2
...


Formation of Malonyl-CoA - The acetyl-CoA carboxylase catalyses the synthesis of
malonyl-CoA
...
Acetyl-CoA carboxylase contains
covalently bound biotin, and the mechanism and bioenergetics of this reaction parallel
pyruvate carboxylase
...

Fatty Acid Synthase as a Multienzyme Complex
Biosynthesis of fatty acids is catalysed by a polyprotein called fatty acid synthase
...

Reactions:
To initiate biosynthesis, acetyl-CoA reacts with peripheral thiol, where it is bound as a
thirster
...

Condensation reaction between alpha-carbon of malonyl-ACP is driven by the concomitant
decarboxylation, yielding acetoacetyl-ACP synthase
...
The acetyl group from acetyl-CoA forms the
terminus of acetoacetyl-ACP, the last two carbon atoms at the omega-end of the fatty acid
...

The next step involves a dehydration to 2,3-ttrans-butenoyl-ACP (crotonyl-ACP) catalysed
by the beta-hydroxacyl-ACP dehydrates
...
Two NADPH2 molecules are required for each two carbon unit that is added
during biosynthesis
...
Malonyl-CoA next combines with ACP
...

Palmitate is released from the fatty acid synthase complex by an exergonic hydrolysis
reaction
...

Net reaction:

Acetyl-CoA + 7 malonyl-CoA + 14 NADPH2 ——> CH3(CH2)14COOH + 7 CO2 + 8CoA +
14 NADP + 6 H2O
Acetyl-CoA serves as the primer for biosynthesis; acetyl-CoA provides the two carbon
atoms farthest from the carbonyl group
...
All
carbon atoms of FA are derived from acetyl-CoA
...
1:1 ration - one mole of ATP per 1 mole of acetyl-CoA
from citrate
...
Total of 15 moles of ATP equivalents are needed for synthesis of palmitate
from citrate; 14 moles of NADPH2 would provide the energy for the synthesis of 35
additional moles of ATP
...
The ER
contains the enzyme activities that elongate palmityl-CoA - reduce, dehydrate, the
compound to produce fatty acyl-CoA containing 2 additional carbon atoms
...

The fatty acyl-CoA substrate for elongation can be either un/saturated
...
The elongation process is the
reversal of Beta-oxidation except that an NADPH2 reductase substitutes for the FADrequiring enzyme-catalysed reaction
...
A variety of fatty acyl-CoA
molecules can serve as substrate and the location of the double bond depends on the
desaturases
...

Regulation: Reaction catalysed by acetyl-CoA carboxylase is the main regulatory step in
fatty acid biosynthesis
...

abundance of cyclic citrate acts as a signal that fuel molecules are high
...
Hence, isocitrate dehydrogenase is a key regulatory
step in the Krebs cycle
...
This can occur because
isocitrate dehydrogenase is not maximally activated
...

Conditions that favour fatty acid synthesis produce an inhibitor of a step required before
fatty acid oxidation
...

Hormonal control: acetyl-CoA carboxylase activity is regulated by phosphorylation and
under control of glucagon (stimulating phosphorylation - inactivating the enzyme) and
insulin (activating phosphoprotein phosphates 1)
...

Liver: net result - production of ketone bodies (occurs under insufficient carb storage and
gluconeogenic precursors availability)
...

Insulin has opposite effect to glucagon and epinephrine leading to increased glucagon
triacylglycerides synthesis
...


32
...
Role of Lecithin and
Phosphatidylinositol
4,5-bisphosphate
...

General structure of Phosphoglycerides:

The two acyl groups appear in the orange area, linked to the glycerol (in the white area) by ester
(carboxylic ester) linkages
...
In the green area, appears the Phosphate linked through a
phosphoric ester linkage to the glycerol, but also to X, the hydroxylated compound whose OH
group has formed an ester linkage with the Phosphoric acid (Phosphate, at physiological pH)
...

Depending on the identity of X, the phosphoglyceride can be:








Phosphatidate (if X is an Hydrogen)
Phosphatidyl choline aka lecithin (if X is choline)
Phosphatidyl ethanolamine (if X is ethanolamine)
Phosphatidyl serine (if X is serine)
Phosphatidyl glycerol (if X is another glycerol)
Phosphatidyl inositol (if X is inositol)
Cardiolipin (if X is a glycerophosphatidate)

In the group of Phosphoglycerides are also included other compounds that do not have the
Phosphatidyl structure, since these compounds have linked to the C1 of glycerol an alkyl side
chain bound through an ether linkage, instead of the acyl side chain linked through an ester
linkage, characteristic of the phosphatidyl group
...

The most important representatives of this kind of phosphoglycerols are Plamalogens and Platelet
Activating Factor
...


Lecithin is a generic term to designate any group of yellow-brownish fatty substances occurring in
animal and plant tissues composed of phosphoric acid, choline, fatty acids, glycerol, glycolipids,
triglycerides, and phospholipids (e
...
, phosphatidylcholine, phosphatidylethanolamine, and
phosphatidylinositol)
...
) or mechanically
...
It has low solubility in water, but is an
excellent emulsifier
...
This results in a
type of surfactant that usually is classified as amphipathic
...
In cooking, it is sometimes used as an emulsifier and to prevent sticking, for
example in nonstick cooking spray
...
It is suggested that LCAT plays a crucial role in reverse
cholesterol transport, a process depicting the removal of cellular cholesterol through efflux to high
density lipoproteins (HDL) and its delivery to the liver for eventual excretion from the body
...
Increasing number of large scale,

population-based studies failed to detect an elevated cardiac risk with reduced blood levels of
LCAT, suggesting that reduced LCAT activity may not be a risk factor nor a therapeutic target
...
Coordinated
modulation of a number of anti-obesity and insulin sensitising pathways has been implicated
...
PIP2 is enriched at the plasma membrane where it is a substrate
for a number of important signalling proteins
...

IP3/DAG pathway
IP3/DAG pathway
PtdIns(4,5)P2 functions as an intermediate in the IP3/DAG pathway, which is initiated by ligands
binding to G protein-coupled receptors activating the Gq alpha subunit
...
PIP2 regulates the function of many membrane
proteins and ion channels, such as the M-channel
...
In this cascade, DAG remains on the cell membrane and activates the signal
cascade by activating protein kinase C (PKC)
...
The effect of PKC could be reversed by phosphatases
...
Calcium participates in the cascade by activating other proteins
Regulation
PIP2 is regulated by many different components
...
Some of the factors involved in PIP2 regulation are Lipid kinases, Lipid Phosphatase
Lipid Transfer Proteins
Growth Factors, Small GTPases
Cell Attachment
Cell-Cell Interaction
Change in cell volume
Cell differentiation state
Cell stress

33
...

Sphingolipidoses
Sphingolipids, or glycosylceramides, are a class of lipids containing a backbone of sphingoid
bases, a set of aliphatic amino alcohols that includes sphingosine
...
Sphingolipidoses, or disorders of
sphingolipid metabolism, have particular impact on neural tissue
...
Other common R groups include
phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding
cerebrosides and globosides, respectively
...

The long-chain bases, sometimes simply known as sphingoid bases, are the first non-transient
products of de novo sphingolipid synthesis in both yeast and mammals
...
Ceramides and glycosphingolipids are N-acyl derivatives of
these compounds
...
The backbone is also amide-linked to an acyl group, such as a fatty acid
...
The preferred substrates for this reaction are palmitoyl-CoA and serine
...
Dihydrosphingosine is acylated
by a (dihydro)-ceramide synthase, such as Lass1p or Lass2p (also termed as CerS), to form
dihydroceramide
...

Metabolic pathways of various forms of sphingolipids:
Sphingolipidoses are labeled at corresponding stages that are deficient
...
It may be phosphorylated by ceramide kinase to
form ceramide-1-phosphate
...
Additionally, it can be converted to sphingomyelin by the addition of
a phosphorylcholine headgroup by sphingomyelin synthase
...
Finally, ceramide may be broken down by a ceramidase to form sphingosine
...
This may be dephosphorylated to reform
sphingosine
...
The complex
glycosphingolipids are hydrolyzed to glucosylceramide and galactosylceramide
...
Similarly,
sphingomyelin may be broken down by sphingomyelinase to form ceramide
...
This forms ethanolamine phosphate and hexadecenal
...
Cholesterol Synthesis
...
Regulation
...

Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%,
of the amount produced each day
...

The acetyl-CoA utilized for cholesterol biosynthesis is derived from an oxidation reaction (e
...
, fatty
acids or pyruvate) in the mitochondria and is transported to the cytoplasm by the same process as
that described for fatty acid synthesis (see the Figure below)
...
All the reduction reactions of cholesterol biosynthesis
use NADPH as a cofactor
...

Additionally, these intermediates are used in the lipid modification of some proteins
...
Note that the cytoplasmic malic enzyme catalyzed
reaction generates NADPH which can be used for reductive biosynthetic reactions such as those
of fatty acid and cholesterol synthesis
...
SLC16A1 is the pyruvate transporter (also called the monocarboxylic
acid transporter)
...
Acetyl-CoAs are converted to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)
2
...
Mevalonate is converted to the isoprene based molecule, isopentenyl pyrophosphate (IPP), with
the concomitant loss of CO2
4
...
Squalene is converted to cholesterol
...
Synthesis begins with the transport of acetyl-CoA from the
mitochondrion to the cytosol
...
The phosphorylation reactions are required to
solubilize the isoprenoid intermediates in the pathway
...
The
abbreviation "PP" (e
...
isopentenyl-PP) stands for pyrophosphate
...
3g/day
...
The level of cholesterol synthesis
is regulated in part by the dietary intake of cholesterol
...

The greatest proportion of cholesterol is used in bile acid synthesis
...
Regulation of HMGR activity and levels
2
...
Regulation of plasma cholesterol levels via LDL receptor-mediated uptake and HDL-mediated
reverse transport
...
The enzyme is controlled by four distinct mechanisms: feed-back inhibition, control of
gene expression, rate of enzyme degradation and phosphorylation-dephosphorylation
...
Cholesterol acts as a feedback inhibitor of pre-existing HMGR as well as inducing rapid degradation of the enzyme
...
This ability of cholesterol is a consequence of the
sterol sensing domain, SSD of HMGR
...
The mechanism by
which cholesterol (and other sterols) affect the transcription of the HMGR gene is described below
under regulation of sterol content
...
The enzyme is most active in its unmodified form
...
HMGR is phosphorylated by AMP-activated protein kinase, AMPK
(this is not the same as cAMP-dependent protein kinase, PKA)
...
Phosphorylation of AMPK is catalyzed by at least 2 enzymes
...
LKB1 was first identified as a gene in humans carrying an
autosomal dominant mutation in Peutz-Jeghers syndrome, PJS
...
The second AMPK phosphorylating enzyme is calmodulin-dependent
protein kinase kinase-beta (CaMKKβ)
...
Visit AMPK: The Master Metabolic
Regulator for more detailed information on the role of AMPK in regulating metabolism
...
HMGR is most active in the dephosphorylated state
...
Phosphorylation of AMPK is catalyzed by at least 2 enzymes:
LKB1 and CaMKKβ
...
Conversely, insulin stimulates the removal of phosphates and, thereby, activates HMGR
activity
...


35
...

Cholesterol
Excretion
...


Bile salts - there are two species - primary and secondary
...

Secondary bile salts results from the action of intestinal bacteria on the primary bile salts
...
Hydroxyl group is added by 7 alphahydroylase
...

Remaining 5-carbon fragment contains a carboxyl group
...
The reaction
involves NADPH, molecular oxygen and the cytochrome P-450
...
pK of the bile acids is
about 6
...

Excretion of Cholesterol - cholesterol is susceptible to oxidation and easily forms oxygenated
derivatives known as oxysterols
...

Additional roles for oxysterols in human physiology include their: participation in bile acid
biosynthesis, function as transport forms of cholesterol, and regulation of gene transcription
...
These derivatives undergo degradation upon storage and it is essential to purify cholesterol
prior to use
...

Cholesterol is oxidized by the liver into a variety of bile acids
...
A mixture of conjugated and nonconjugated bile acids,
along with cholesterol itself, is excreted from the liver into the bile
...
The excretion
and reabsorption of bile acids forms the basis of the enterohepatic circulation, which is essential for
the digestion and absorption of dietary fats
...
Although, lecithin and bilirubin gallstones also occur, but less frequently
...
This cholesterol originates from the diet, bile, and
desquamated intestinal cells, and can be metabolised by the colonic bacteria
...
A
cholesterol-reducing bacterium origin has been isolated from human faeces
...
Many of these cholesterol-regulated genes are
homologues of fatty acid β-oxidation genes, but have evolved in such a way as to bind large
steroid substrates like cholesterol
...
This disease process leads to myocardial infarction
(heart attack), stroke, and peripheral vascular disease
...
On the other hand, high concentrations of functional
HDL, which can remove cholesterol from cells and atheroma, offer protection and are sometimes
referred to as "good cholesterol"
...


Conditions with elevated concentrations of oxidised LDL particles, especially "small dense
LDL" (sdLDL) particles, are associated with atheroma formation in the walls of arteries, a condition
known as atherosclerosis, which is the principal cause of coronary heart disease and other forms
of cardiovascular disease
...

Increased concentrations of HDL correlate with lower rates of atheroma progressions and even
regression
...
Still, because cardiovascular disease is
relatively rare in the younger population, the impact of high cholesterol on health is still larger in
older people
...
)  Fate  of  Amino  Acid  Nitrogen
...
 
 
AMMONIA  DERIVED  FROM  DEAMINATION:  
 
Ammonia  derived  mainly  from  deamination  of  the  α-­‐amino  nitrogen  of  amino  acids  is  toxic
...
 
Deamination  of  the  glutamine  in  the  liver,  releases  ammonia  which  is  efficiently  converted  to  non-­‐
toxic  urea
...
 Urea  accounts  for  80-­‐90%  of  
excreted  nitrogen  in  ureotelic  organisms-­‐terrestrial  mammalians
...
 Consequently  aquatic  organisms  are  ammoniotelic  and  birds  are  uricotelic
...
 Creatinine  is  produced  from  creatine  phosphate
...
 These  compounds  are  mainly  excreted  in  the  urine,  lost  in  
faeces  and  through  the  skin
...
 (e
...
 bilirubin  
excreted  mainly  in  faeces)
...
5g  of  
nitrogen  per  day
...
 Urea  cycle  was  the  first  metabolic  
cycle  to  be  understood,  it  was  described  by  Hanz  Krebs  and  Kurt  Henseleit  in  1930-­‐1932
...
 The  
synthesis  is  a  cyclic  process,  which  uses  ornithine  as  the  substrate  and  produces  it  as  a  product  at  
the  end
...
 
 
SUBSTRATES:  
 
The  carbon  and  oxygen  in  urea  are  derived  from  carbon  dioxide,  which  is  combined  with  water  and  
this  produces  carbonic  acid
...
 The  nitrogen  atoms  
are  derived  from  ammonium  ion  and  aspartate
...
 
• Ammonia  is  produced  in  peripheral  organs  and  is  transported  to  the  hepar  organ  as  
glutamate  and  alanine
...
 Since  reabsorbed  
ammonia  from  intestine  is  moved  to  liver,  normally  this  ammonia  is  converted  in  to  urea
...
 
 
ENZYMES:  
• Carbamoyl-­‐phophate  synthetase  1  (CPS-­‐1)  :  mitochondrial  liver  enzyme  
• Ornithine-­‐transcarbamoylase  (OTC)  
• Citrulline  synthase  
• Arginine-­‐succinate-­‐synthase  




Arginino-­‐succinate-­‐lyase  
Arginase  

 
REACTIONS:  
 

NH4+  +  HCO3-­‐  +  2  ATP  →  NH2CO2PO3-­‐2  +  2  ADP  +  Pi  +  2H+  
The  urea  cycle  starts  with  carbamyl-­‐phosphate  synthetase  reaction
...
 Eukaryotes  have  2  forms  of  
CPS  :  mitochondrial  CPS-­‐I  (uses  ammonia  as  nitrogen  donor  and  participate  in  urea  biosynthesis)  and  
cytoplasmic  CPS-­‐II  (uses  glutamate  as  nitrogen  donor  and  participates  in  pyrimidine  synthesis)
...
 In  the  first  step,  ATP  reacts  with  bicarbonate  to  for  
energy  rich  carbonyl-­‐phosphate  intermediate  and  ADP  is  released
...
 In  the  3rd  step,  
carbamate  accepts  phosphoryl  group  from  ATP  to  form  energy  rich  carbamyl  phosphate
...
 
 
Carbamyl  phosphate  reacts  with  ornithine-­‐  amino  acid  to  produce  citrulline
...
 The  reaction  is  exergonic  and  
proceeds  with  a  loss  of  the  energy  rich  bond  of  the  carbamoyl  phosphate
...
 Both  citrulline  and  ornithine  are  amino  acids,  but  
they  are  not  found  in  proteins
...
 It  involves  the  condensation  of  aspartate  with  ureido  
group  or  citrulline
...
 Pyrophosphate  is  hydrolysed  by  the  enzyme  pyrophosphatase
...
 
 
Arginino-­‐succinate  is  split  using  arginine-­‐succinase  (Arginino  -­‐succinate-­‐lyase)  to  yield  arginine  and  
fumarate
...
 The  fumarate  produced  can  be  
converted  to  aspartate  via  the  fumerase  and  malate  dehydrogenase  reactions  to  form  oxaloacetate,  
followed  by  transamination
...
 
 
The  final  reaction  of  the  urea  cycle  is  that  of  the  enzyme  arginase  catalysing  the  hydrolysis  of  or  
arginine  to  form  the  product  of  the  pathway  (urea)  and  the  regeneration  substrate  (ornithine)
...
 
 
Ornithine  then  enters  mitochondrion  and  the  process  is  repeated
...
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
To  

form  the  non-­‐toxic  excretion  product  urea,  the  urea  cycle  thereby  coverts  2  amino  groups:  
• One  from  ammonia    
• One  from  aspartate  
• (Also  a  carbon  atom  from  bicarbonate)    
 
SUMMARY:  
 
NH3  +  HCO3  +  Aspartate  +  3  ATP  +  H2O  →  UREA  +  Fumarate  +  2ADP  +  AMP  +  4Pi  
 
The  energy  cost  is  recovered  by  the  energy  released  upon  the  formation  of  the  urea  cycle  substrates:  
• Ammonia  is  produced  mainly  in  the  glutamate  dehydrogenase  reaction,  the  process  is  
accompanied  by  formation  of  NADH
...
   
 

These  two  molecules  of  NADH  insures  6  ATP  molecules
...
 
 
REGULATION:  
 
The  CPS-­‐1  is  the  main  regulatory  enzyme
...
 The  remaining  enzymes  of  urea  cycle  are  controlled  by  the  concentrations  and  availability  
of  their  substates
...
 
Contrary  diet  rich  in  carbohydrates  reduces  the  level  of  urea  cycle  enzymes
...
   
 
Renal  disease  is  often  associated  with  the  elevation  of  blood  urea  nitrogen  (BUN),  which  is  not  toxic  
at  such  low  concentrations
...
 
One  postulated  mechanism  of  ammonia  toxicity  is  depletion  of  α-­‐ketoglutarate  metabolite  of  Krebs  
cycle
...
 In  general,  
they  are  severe  defects,  associated  with  mental  retardation,  seizures,  coma  and  early  death
...
 When  liver  function  is  
seriously  compromised,  for  example  in  individuals  with  massive  cirrhosis  of  severe  hepatitis,  
ammonia  circulates  in  the  blood
...
 
 
TREATMENT:  
• Diet  with  low  protein  content  
• Frequent  meals  with  low  food  quantity  
• Neomicyn-­‐supresses  bacterial  flora  thus  lowering  the  intestinal  production  of  ammonia  
 
Guidelines  to  the  differential  diagnosis  (DDX)  of  neonatal  Urea  Cycle  Disorder  (UCDs)
...
 This  diagnosis  can  be  confirmed  by  the  abscence  of  acidosis  or  
ketosis
...
 The  baby  maybe  irritable  at  first,  followed  by  vomiting  and  increasing  lethargy
...
 If  untreated,  the  
child  will  die
...
 Moderately  high  levels  are  indicative  
of  arginino-­‐succinate  lyase  deficiency  (ALD)  and  extremely  high  levels  are  indicative  of  arginino-­‐
succinate  synthetase  deficiency  (ASD)
...
 
 
Clinical  symptoms  are  most  severe  when  the  UCD  is  at  a  level  of  carbamoyl  phosphate  synthetase  I  
(CPSI)
...
 Poor  
feeding  and  eventually  coma  and  death  if  not  recognised  and  treated  properly
...
 Several  UCDs  manifest  with  late  onset  such  as  in  
adulthood
...
   
 

In  general  the  treatment  of  UCDs  has,  as  common  elements:  
• the  reduction  of  protein  in  diet  
• removal  of  excess  ammonia  and  replacement  intermediates  missing  from  urea  cycle  
 
Administration  of  laevulose  reduces  ammonia  through  its  action  of  acidifying  the  colon
...
 Antibiotics  can  be  administered  to  kill  intestinal  ammonia  producing  bacteria
...
)  Other  Ways  of  Detoxification  of  Ammonia:  Glutamate  
Dehydrogenase  Reaction  ;  Oxidative  Deamination  of  Amino  Acids  ;  The  
Role  of  Glutamate  ;  Biosynthesis  of  Glutamine
...
 
 
 Normal  diet  contains  about  100g  protein/day
...
 Most  of  the  amino  acids  
are  used  for  the  synthesis  of  proteins  in  the  liver  and  in  other  tissues,  and  other  nitrogen  containing  
compounds
...
   
 
During  fasting,  muscle  protein  may  be  degraded  into  amino  acids,  some  of  which  are  partially  to  
produce  energy
...
 These  enzymes  include:  
• Transaminases  
• Glutamate  dehydrogenase  
• Glutaminase  
• Dehydratases  
• Deaminases  
 
Nitrogen  must  be  removed  before  degradation  of  carbon  skeleton  of  amino  acids
...
5g  of  nitrogen  is  released
...
 In  the  liver  ,  this  ammonia  
is  converted  to  urea  (which  is  non-­‐toxic  and  water  soluble)  and  it  is  readily  excreted  in  urine
...
 Other  nitrogen  excretion  compounds  are:  
• Creatinine  is  produced  from  creatine  phosphate  
• Uric  Acid  is  degradation  product  of  purine  
• Ammonia  is  released  from  glutamine  (acts  as  urine  buffer  within  kidneys  by  reacting  with  
protons  to  form  ammonia  ions(NH4+)  )
...
   
Small  amounts  of  nitrogen  containing  compounds  are  formed  from  the  degradation  of  
neurotransmitters,  hormones  (also  excreted  with  urine)  and  others  like  bilirubin  (excreted  mainly  
with  faeces)
...
 It  is  involved  in  both  synthesis  
and  degradation
...
 This  enzyme  can  either  accept  NAD  or  NADP  as  its  redox  coenzyme
...
 Thus  it  
forms  α-­‐imino  glutarate
...
   It  can  incorporate  
ammonia  to  produce  glutamate  or  release  ammonia  from  glutamate
...
 This  process  provides  one  source  of  ammonia  that  
enters  the  urea  cycle
...
   
 
e
...
 
After  ingestion  of  a  meal  containing  protein,  glutamate  levels  in  liver  are  elevated
...
   Because  
high  conc
...
 Hence  the  ammonia  produced  is  converted  to  urea
...
 These  properties  suggest  a  
physiological  rartionale,  when  AA  are  needed  for  energy  production,  the  activity  of  the  
dehydrogenase  is  greatest
...
 Dehydrogenase  is  found  to  be  inhibited  by  several  steroid  hormones  
and  thyroxin
...
 The  chemical  properties  of  the  
enzymes  purified  from  liver  and  kidney  have  been  intensively  studied,  but  the  biological  functions  
are  still  not  understood
...
 The  amount  of  enzyme  is  sufficient  to  metabolise  large  quantities  of  substrate
...
 Also  D-­‐amino  acid  oxidases,  oxidise,  N-­‐methyl-­‐
glycine  (sarcosine)  and  glycine
...
 It  catalyses  the  
reaction  :  
 
2  H2O2  →  O2  +  H2O  
 
D-­‐amino  acid  oxidase  occurs  mainly  in  the  kidney
...
 
Superficially  the  over  a  reaction  is  catalysed  by  the  amino  acid  oxidases,  appears  to  resemble  the  
complex  of  reactions  initiated  by  GDH  and  followed  by  the  mitochondrial  oxidation  of  NADH
...
 E  and  is  catalysed  by  glutamate
...
 An  additional  quantity  of  ammonia  is  produced  by  enteric  
bacteria,  which  is  then  absorbed  into  the  portal  venous  blood,  which  thus  contains  higher  levels  of  
ammonia  than  the  systemic  blood
...
 Ammonia  concentration  in  blood  is  low  at  about  10-­‐20µg/dL  
=100ml
...
 
 
D-­‐Amino  
Acid  
Oxidase  

(IMAGE:  Action  of  D-­‐amino  acid  oxidase
...
)  
 
 
THE  MAIN  PROCESS  INVOLVED  IN  AMMONIA  DETOXIFICATION:  
 These  are:  
• Reductive  amination  
• Biosynthesis  of  glutamine  
• Ammoniogenesis  in  kidney  
 
 
REDUCTIVE  AMMINATION:  
 
The  reaction  is  one  of  two  mechanisms  for  incorporation  ammonia  ions  into  amino  acids  by  fixation  
of  ammonia-­‐by  reverse  glutamate  dehydrogenation  (GDH)  reaction
...
 The  reaction  is  
reverse  of  the  oxidation  of  glutamate  and  is  catalysed  by  the  enzyme  glutamate  dehydrogenase  
(GDH)
...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regulation:  
 
 
 
 GDH  is  inhibited  by  ATP  and  GTP  and  is  activated  by  ADP
...
 At  high  
 
concentrations  of  ammonia,  the  reaction  is  used  to  include  ammonia  
 
into  the  glutamate  and  vice  versa
...
 
 
 

 

BIOSYNTHEIS  OF  GLUTAMINE:  
 
This  is  another  reaction  involving  the  detoxification  of  ammonia
...
 It  is  catalysed  by  the  enzyme  glutamine  synthetase
...
 This  reaction  
consumes  energy  in  the  form  of  ATP,  the  reaction  mechanism  involves  formation  of  a  ɣ-­‐glutamyl-­‐
phosphate  intermediate
...
   
 
ATP  +  Glutamate  +    NH3  →  [  ɣ-­‐Glutamyl-­‐phosphate  Intermediate]  →  Glutamine  +  ADP  +  Pi  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The  kidney,  the  gut  and  the  cells  with  rapid  turnover  rates  such  as  those  of  the  immune  system  are  
the  major  sites  of  glutamine  uptake
...
 The  excess  of  nitrogen  not  used  for  glutamine  synthesis  is  transferred  
to  pyruvate  to  form  alanine  -­‐  this  carries  this  nitrogen  back  to  the  liver
...
 The  main  metabolism  of  
glutamine  carbon  atoms  in  the  gut,  is  oxidation  to  CO2  or  it  conversion  to  the  carbon  skeletons  of  
lactate,  citrulline  or  ornithine
...
 
 
AMMONIOGENESIS  
 
Glutamine  is  reconverted  to  glutamate  by  the  enzyme  glutaminase
...
 
 
Glutamine  +  H2O  →  Glutamate  +  NH3  
 

Glutaminase  is  important  in  the  kidneys  as  it  is  where  ammonia  is  generated  and  then  excreted  in  
urine  as  ammonium  salts
...
 
Ammonia  is  produced  by  renal  tubular  cells  and  its  production  is  increased  in  metabolic  acidosis
...
 In  intestinal  enterocytes,  α-­‐
ketoglutarate  is  used  in  anaplerosis  (chemical  reactions  that  form  intermediates  of  a  metabolic  
pathway)  of  TCA  (Citric  acid  cycle),  since  activities  of  pyruvate  dehydrogenase  (DH)  and  pyruvate  
carboxylases  are  low
...
 NH4+  is  released  from  glutamine  by  glutaminase  and  by  glutamate  
dehydrogenase,  resulting  in  the  formation  of  α-­‐ketoglutarate
...
 
The  α-­‐ketoglutarate  is  oxidised  to  CO2,  converted  to  glucose  (used  in  renal  medulla),  or  converted  to  
alanine  to  return  ammonia  to  the  liver  for  urea  synthesis
...
 Renal  
glutamine  utilization  for  proton  excretion  takes  place  over  the  requirements  of  other  tissues  for  
glutamine
...
   Specific  transporters  in  the  renal  tubular  cells  transport  protons  from  
these  cells  in  to  the  tubular  lumen  in  exchange  for  Na+
...
 Ammonia  (NH3),  which  is  uncharged,  enters  the  
urine  by  free  diffusion  through  the  cell  membrane
...
 This  ammonium  ion  cannot  be  transported  back  in  to  the  cells  and  is  
excreted  in  urine
...
 However  this  is  increased  to  a  greater  
extend  during  fasting  and  during  metabolic  acidosis
...
 Asparagine  is  produces  in  a  
transferase  reaction  with  glutamine
...
 
 
Aspartate  +  ATP  +  Glutamine  →  Asparagine  +  Glutamate  +  AMP  +  2Pi  
 

 

Asparaginase  catalyses  the  hydrolysis  of  asparagine  to  yield  aspartate  and  ammonia:  
 
Asparagine  +  H2O  →  Aspartate  +  Ammonia  
 

 
 
For  both  reactions,  asparaginase  and  glutaminase  are  exergonic
...
 
Asparaginase  decreases  the  level  of  asparagine-­‐essential  for  tissue  growth
...
   
 
Glutamine  nitrogen  is  derived  mainly  from  the  BCAA
...
)  Decarboxylation  of  Amino  Acids
...
 Their  Importance  and  Degradation
...
 These  reactions  produce  amines  that  often  serve  as  neurotransmitters  
and  hormones
...
 
 
1) Glutamate:  

(GABA)  

(Image:  glutamate  is  dearboxylated  at  carbon  1  to  form  an  amine  :  ɣ-­‐aminobutyric  acid  (GABA)
...
 It  binds  several  types  of  receptors:  
• Metabotropic  
• Ionotropic  
• Those  acting  on  adenylyl  cyclase  (affects  Ca  and  K  channels)  
• Cl  channels  
 
Some  steroid  hormones  (e
...
 progesterone)  binds  GABA  receptors,  which  leads  to  a  sleepy  state  and  
an  anaesthetic  effect
...
 This  would  lead  to  membrane  hyperpolarization  and  neuron  
inhibition
...
 
 
Pyridoxine-­‐dependant  Epilepsy  
It  is  a  rare  disease  characterised  by  recurring  seizures  that  can  begin  in  utero,  at  birth  or  during  
infancy
...
 This  is  because,  as  mentioned  before  pyridoxal  
phosphate  plays  important  role  in  synthesis  of  GABA
...
     
 
 
 
 
 
 
 
 

2) Histidine:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Image:  Histidine  is  decarboxylated  by  histidine  decarboxylase  to  form  histamine
...
)  
 
Histamine:  
• mediates  inflammatory  and  allergic  reactions  
• causes  dilation  of  blood  vessels  
• increases  vessel  permeability    
• causes  redness  
• causes  edema  
• mediates  shock  
 
Within  the  lungs  it  causes  bronchio-­‐constriction
...
   
 
Antihistamine  drugs  compete  with  histamine  for  receptors  binding  histamines-­‐used  as  anti-­‐shock  
medicine
...
 
 
3) Aromatic  Amino  Acids:  
The  aromatic  amino  acids  undergo  decarboxylation  during  their  metabolism  to  produce  compounds  
that  serve  as  neurotransmitters  and/or  as  hormones
...
 Tyrosine  is  decarboxylated  to  produce  Catecholamines:  dopamine,  norepinephrine  
and  epinephrine
...
)  
 
Formation  of  serotonin  (5-­‐hydroxytryptamine  [or  5’HT]  ):  tryptophan  is  first  hydroxylated  in  a  
tetrahydrobiopterin  requiring  reaction  by  the  enzyme  L-­‐tryptophanhydroxylase  (TPH)
...
 This  enzyme  provides  the  rate-­‐limiting  step  
for  serotonin  synthesis,  (similar  to  L-­‐tyrosine  hydroxylase)
...
 
 
Serotonin  is  principally  found  stored  in  3  cell  types:  
• The  serotonergic  neurons  in  the  CNS  and  in  the  intestinal  myenteric  plexus
...
 Simlairly,  serotonergic  neurons  also  
have  the  capcity  for  amine  uptake  via  serotonin  transporters
...
 
 
In  the  central  nervous  system(CNS),  serotonin  is  believed  to  play  an  important  role  in  regulation  of:  
• Anger  
• Aggression  
• Body  temp
...
 Serotonin  
stimulates  nervous  system
...
 
 
Low  levels  of  serotonin  may  be  associated  with  several  disorders,  namely:  
• increase  in  aggressive  and  angry  behaviours  
• clinical  depression  
• obsessive-­‐compulsive  disorder  (OCD)  
• migraine  
• irritable  bowel  syndrome  
• tinnitus  
• fibromyalgia  
• bipolar  disorder  
• intense  religious  experiences  
 
If  the  neurons  of  the  brainstem  that  make  serotonin  (serotonergic  neurons)  are  abnormal,  there  is  
risk  of  sudden  infant  death  syndrome  (SIDS)
...
 
 
Selective  serotonin  re-­‐uptake  inhibitors  (SSRIs)  increase  the  extracellular  level  of  the  
neurotransmitter  serotonin  by  inhibiting  its  re-­‐uptake  into  the  presynaptic  cell
...
 (Low  levels  of  serotonin  in  these  areas  
are  what  can  cause  mood  disorders  such  as  depression
...
 Psychotropic  drugs  
(chemical  substances  that  change  brain  function  and  results  alterations  in  perception,  mood  and  
consciousness
...
   
 
Serotonin  is  a  potent  vasoconstrictor  and  a  stimulator  of  smooth  muscle  contraction  as  well  as  
acting  as  a  neurotransmitter
...
 Serotonin  affects  libido-­‐high  serotonin  concentration  decreases  sexual  desire
...
 Seratonin  undergoes  acetylation  by  acetyl  CoA,  followed  by  methylation  by  
S-­‐adenosylmethionine  to  for  melatonin
...
 Melatonin  may  also  be  involved  in  regulating  reproductive  functions
...
 
 
 
4
...
 It  is  a  vasoconstrictor  and  is  
metabolized  when  it  is  degraded  by  the  enzyme  Monoamine  Oxidase  (MAO)
...
)  to  occur
...
 In  
foods,  it  is  often  produced  by  the  decarboxylation  of  tyrosine  during  fermentation  or  decay
...
 Tyramine  is  also  found  in  chocolate,  alcoholic  beverages,  
fermented  foods  like  cheeses  (except  ricotta,  cottage  cheese,  etc
...
   
 
5
...
 They  are  used  in  phospholipid  
synthesis
...
 
 
6
...
   
 
e
...
 
Serotonin  is  oxidised  in  5-­‐hydroxy-­‐indol-­‐acetic  acid  by  MAO-­‐A
...
 of  
substrate  which  permits  the  enzyme  to  achieve  half  the  maximum  rate  of  reaction)  value  than  MAO-­‐
B
...
g
...
g
...
   
 
Interestingly  however,  immunohistochemical  studies  have  suggested  that  serotonin  –containing  
neurons  may  themselves  contain  only  MAO-­‐B
...
 This  is  principally  done  by  an  
isoform  of  aldehyde  dehydrogenase  (ALDH2)  located  in  the  mitochondria,  to  produce  5-­‐
hydroxyindole  acetic  acid  as  the  major  excreted  metabolite  of  serotonin
...
 
However  this  pathway  is  considered  to  be  insignificant
...
Catabolism  of  carbon  skeletons  of  amino  acids
...
 
Surplus  amino  acids  are  used  as  metabolic  fuel
...
 This  is  then  
oxidatively  deaminated  to  yield  ammonium  ions  (NH4+)
...
 Examples  :  
1
...
 

   

2
...
 The  nitrogen  atom  
in  glutamate  is  converted  into  free  ammonium  ion  by  oxidative  deamination
...
 
This  reaction  is  close  to  equilibrium  in  the  liver,  and  the  direction  is  determined  by  the  conc
...
 Its  usually  driven  forward  by  the  rapid  removal  of  NH4+  produced  from  the  
hydrolysis  of  the  Schiff  base  intermediate
...
 PLP  includes  a  pyridine  ring  that’s  slightly  basic,  attached  to  an  OH  group  which  is  slightly  acidic
...
 

 The  most  important  functional  group  on  PLP  is  the  aldehyde,  which  
forms  covalent  Schiff-­‐base  intermediates  with  amino  acid  substrates
...
 The  α-­‐amino  group  of  the  amino  acid  substrate  displaces  the  ε-­‐
amino  group
...
 The  AA-­‐PLP  Schiff  
base  formed  remains  tightly  bound  to  the  enzyme  by  multiple  noncovalent  interactions
...
   

The  Schiff  base  between  the  AA  
substrate  and  PLP,  the  external  aldimine,  loses  a  H+  from  the  α  
-­‐carbon  atom  of  the  AA  to  form  a  quinonoid  intermediate
...
 The  ketamine  is  then  hydrolysed  to  an  α  
 -­‐ketoacid  and  pyridoxine  phosphate  (PMP)
...
   

 
The  2nd  half  takes  place  by  the  reverse  of  the  preceding  pathway
...
 Overall  reaction:  
AA1  +  Ketoacid2  -­‐-­‐-­‐à  AA2  +  ketoacid1  
...
 The  nitrogen  
removed  is  transferred  though  glutamate,  to  alanine,  which  is  released  into  the  bloodstream
...
 This  
transport  is  called  the  glucose-­‐alanine  Cycle
...
 The  carbon  skeleton  of  the  
diverse  set  of  20  fuctional  AA  are  funnelled  into  only  7  molecules:  pyruvate,  acetyl  CoA,  α  
-­‐ketoglutarate,  succinyl-­‐  CoA,  fumarate  and  oxaloacetate
...
 AA  that  are  
degraded  to  pyruvate,  alpha-­‐ketoglutarate,  succinyl  CoA,  fumarate  or  oxaloacetate  are  called  
glucogenic  AA
...
   

 
Only  Leu  and  Lys  are  solely  ketogenic
...
 
Some  of  their  carbon  atoms  emerge  in  acetyl  CoA  or  acetoacetyl  CoA,  whereas  others  in  potential  
precursors  of  glucose
...
   
Degradation  of  AA  classified  into  groups  with  similar  c-­‐atoms
...
 For  
example,  the  transamination  of  alanine  yields  pyruvate  directly
...
   The  α-­‐amino  groups  of  Ser  and  Thr  can  be  directly  deaminated  
to  pyruvate  and  α-­‐amino-­‐β-­‐ketobutyrate  respectively  using  serine  and  threonine  dehydratase,  in  this  
reaction  PLP  is  the  prosthetic  group
...
 Cofactor  for  enzyme:  
N^5-­‐N^10-­‐methylene-­‐THF  that  provides  C1  unit  necessary  for  reaction
...
   

2nd  group-­‐  C4  -­‐oxaloacetate  
Oxaloacetate  is  an  entry  point  into  metabolism  for  Aspartate  and  asparagine
...
 Asparagine  is  hydrolysed  by  asparaginase  to  NH4+  and  aspartate,  which  is  
then  transaminated
...
 These  AA  are  1st  converted  to  glutamate,  
which  is  then  oxidatively  deaminated  by  glutamate  dehydrogenase  to  yield  alpha-­‐ketoglutarate
...
 The  amide  bond  in  the  ring  of  this  
intermediate  is  hydrolysed  to  the  N-­‐formimino  derivative  of  glutamate,  which  is  the  converted  into  
glutamate  by  the  transfer  of  its  formimino  group  to  tetrahydrofolate  (THF),  a  carrier  of  activated  

one-­‐  carbon-­‐  units
...
 Proline  and  Arginine  are  both  converted  to      glutamate  gamma-­‐semialdehyde,  which  
is  then  oxidized  into  glutamate
...
 For  Arg:  ornithine
...
 Propionyl  
CoA  and  methylmalonyl  CoA  are  intermediates  in  the  breakdown  of  these  AA
...
 For  Ile  –  α-­‐keto-­‐β-­‐methylvalerate)  
2) Oxidative  decarboxylation  to  corresponding  acyl-­‐CoA
...
 Thiolytic  cleavage  yielding  acetyl-­‐CoA  and  propionyl  CoA,  which  is  
converted  to  succinyl-­‐CoA
...
   
Leu  degradation  includes  carboxylation  and  hydrolysis  to  yield  Acetyl-­‐CoA  and  acetoacetate
...
 The  α-­‐keto  acid  
dehydrogenase  which  catalyses  oxidative  decarboxylation  of  the  transamination  metabolites  of  
branched  chain  AA  is  a  multienzyme  complex
...
   
Lys  degradation  in  liver  by  formation  of  α-­‐keto  glutamate-­‐lysine  intermediate  scharopine  the  
pathway  includes  reactions  from  other  pathways  :  transamination,  decarboxylation  of  alpha-­‐
ketoacids,  similar  reaction  to  beta-­‐oxidation  and  alpha-­‐ketoglutarate  DH
...
 A  genetic  defect  in  1st  
enzyme  involved  leads  to  hyperlysinemia,  hyperlysinuria  along  with  mental  and  physical  retardation
...
 Methionine  degraded  to  succinyl  CoA
...
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44
...
 Biosynthesis  of  non-­‐essential  AA
...
 

 
Asp,  Ala  and  Glu  are    formed  by  the  addition  of  an  amino  group  to  an  α-­‐ketoacid  (α-­‐ketoglutarate,  
oxaloacetate  and  pyruvate)  by  a  transamination  reaction
...
 Within  a  transaminase,  the  internal  akdimine  is  
converted  into  PMP  by  reaction  with  glutamate  in  a  multi-­‐step  process
...
 The  aldimine  is  cleaved  to  release  the  newly  forme  AA  to  complete  the  
cycle
...
   
Glu  is  the  precursor  of  Gln,  Pro  and  Arg
...
   
3-­‐phosphoglycerate  is  the  precursor  of  Ser,  Cys  and  Gly
...
 
formed  
transfer  of  side  chain  methylene  group  of  srine  to  tetrahydrofolate
...
 This  
interconveersion  is  catalysed  by  serine  hydroxymethylaseferase
...
 The  sulphur  atom  
of  Cys  is  derived  from  homocysteine,  whereas  the  carbon  skeleton  comes  from  serine
...
 Its  conversion  to  Cys  and  
ketobutyrate  is  catalysed  by  cystathioninase
...
   

Shikimate  and  Chorismate  are  intermediates  in  the  biosynthesis  of  aromatic  AA  (Trp,  Phe,  Tyr)
...
 Oxidative  decarboxylation  
yields  p-­‐  hydroxyphenypyruvate
...
   
 
 
 
 
 
 
 

45
...
 Inhibitors  of  folate  reductase  as  drugs
...
 This  cofactor  consists  of  3  groups:  a  substituted  pteridine  
ring  (tetrahydropterin),  p-­‐aminobenzoate  and  a  chain  of  one  or  more  glutamate  residues
...
 They  obtain  THF  from  
their  diets  or  from  microbes  in  their  intestinal  tracts
...
 This  unit  exists  in  
3  oxidation  states  and  the  most  reduced  form  carries  a  methyl  group,  whereas  the  intermediate  
carries  a  methylene  group
...
 The  
fully  oxidized  C1  unit,  CO2  I  carried  by  biotin  rather  than  THF
...
   
The  2nd  important  source  of  C1  groups  is  the  cleavage  of  Gly
...
 Trp  degradation  gives  N^10-­‐Formyl-­‐THF
...
   
Used  in  Ser  and  Gly  synthesis  
Clinical  Importance:  
Folate  deficiency  causes  megaloblastic  anemia
...
   
Drugs  analogous  to  folic  acid  or  its  components:  
Methotrexate-­‐  used  as  cystostatic  in  chemotherapy  
Sulfonamides-­‐  frug  that  is  an  analog  of  p-­‐aminobenzoic  acid
...
     
SAM  (S-­‐adenosylmethionine)  

 It  participates  in  the  synthesis  of  many  compounds  that  contain  methyl  groups
...
   

 
Synthesized  by  transfer  of  adenosyl  group  from  ATP  to  sulfur  atom  of  methionine
...
 SAH    is  then  hydrolysed  to  homocysteine  and  
adenosine
...
 Vitb12  is  the  
coenzyme  that  mediates  this  transfer
...
 Supplementation  with  pyridoxine,  folic  acid,  B12  or  betaine  reduces  
homocysteine  concentration  in  the  blood
...
 of  endothelial  
asymmetric  dimethylarginine
...
 can  be  raised  by  intense  long  duration  exercise  as  it  could  increase  the  load  on  
methionine  metabolism
...
 Minimal  levels  of  homoc  =  about  6  
µmol/L
...
   
In  patients  with  vitb12  deficiency  N^5-­‐methylTHF  cannot  be  converted  to  free  THF
...
 The  exhaustion  of  THF  leads  to  deficiencies  in  THF  
derivatives  needed  for  dTMP  and  purine  synthesis
...
   
Deficiency  of  b12  causes  methyyylmaonyl  CoA  to  accumulate  in  the  brain,  which  could  act  as  a  
competitive  inhibitor  of  malonyl  CoA  in  FA  synthesis  OR  it  may  act  as  a  substitute  for  malonyl  CoA  in  
the  formation  of  FA  unclear…research
...
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

46
...
 Inherited  Enzyme  Defects-­‐Phenylketonuria  and  Alkaptonuria  
The  degradation  of  Phe  begins  with  its  oxidation  to  tyrosine,  a  reaction  catalysed  by  phenylalanine  
hydroxylase,  located  in  the  liver
...
 Phe  is  an  
essential  AA,  but  Tyr  is  not
...
 

The   reductant   here   is   tetrahydrobiopterin,  
an  electron  carrier  derived  from  the  cofactor  biopterin
...
  The   active   form   of   biopterin   is   the   fully   reduced   form,   5,6,7,8   Tetrahydrobiopterin   is  
initially   formed   from   7,-­‐dihydrobiopterin   by   NADPH   in   a   reaction   catalysed   by   dihydrofolate  
reductase
...
   
(3)   This   α-­‐keto   acid   then   reacts   with   O2   to   form   homogentisate,   using   the   enzyme   p-­‐
hydroxyphenylpyruvate  hydroxylase  (a  dioxygenase  bacuse  both  atoms  of  O2  become  incorporated  
into  the  product,  one  on  the  ring  and  one  u  the  carboxyl  group  )
...
   
(5)   4-­‐maleylacetoacetate   s   then   isomerized   to   4-­‐fumarylacetoacetate   by   an   enzyme   that   uses  
Glutathione  as  a  cofactor
...
   
Phenylketonuria-­‐   An   autosomal   recessive   disease   caused   by   an   absence   or   deficiency   of  
Phenylalnine  hydroxylase
...
 So  there  are  elevated  levels  of  the  AA  in  blood
...
  If   undiagnosed   and   untreated,   PKU   can   result   in   impaired   postnatal   cognitive  
development
...
  Conc
...
2mmol/L-­‐
7mg%
...
 The  aim  is  to  provide  just  enough  Phe  to  meet  the  
needs  for  growth  and  development,  which  is  to  maintain  levels  in  blood  between  3  and  12  mg/dL
...
 In  both  cases  neurologic  symptoms  
and  mental  retardation  are  seen  in  a  few  months  after  birth
...
  So   the   homogentisate   produced   cannot   be   further   metabolized,   it   accumulates   and   is  
excreted  in  urine,  which  turns  dark  on  standing  as  homogentisate  is  oxidized  and  polymerized  to  a  
melanin-­‐like   substance
...
  Commonly   recommended  

treatment:  dietary  restriction  of  Phe  and  Tyr  and  large  dose  of  ascorbic  acid  (vitC)
...
   
47
...
 
Epinephrine  
It  is  widely  known  as  Adrenaline  and  is  a  hormone  and  neurotransmitter
...
 Adrenaline  is  a  natural  stimulant  made  in  the  adrenal  gland  
of  the  kidney  from  Tyr
...
   
Norepinephrine  
Also  underlies  the  “flight  or  fight”  response,  directly  increasing  heart  rate,  triggering  the  release  of  
glucose  from  energy  stores,  and  increasing  blood  flow  to  skeletal  muscles
...
 It  is  released  from  adrenal  medulla  
into  the  blood  as  a  hormone  and  as  a  neurotransmitter  in  the  CNS  and  SNS  where  its  released  from  
noradrenergic  neurons
...
 It  is  produced  in  several  areas  of  the  brain,  including  the  substantia  nigra  
and  the  ventral  tegmental  area
...
   

 
 
L-­‐DOPA  =  3,4-­‐Dihydroxyphenylalanine…the  reaction  forming  this  also  requires  5,6,7,8-­‐
tetrahydrobiopterin  as  a  cofactor
...
   
Adenosylmethionine  provides  the  methyl  group  needed  for  conversion  of  noradrenaline  to  
adrenaline
...
 The  pacemaker  for  the  
synthesis  of  these  catecholamines  is  Tyrosine  Hydroxylase
...
 They  are  stored  in  vesicles  until  released  by  transient  
change  in  electrical  potential  along  the  axon
...
   
Receptors-­‐  adrenergic  :  α1-­‐activates  PhospholipaseC  
Α2-­‐  inhibits  adenylate  cyclase  (AC),  reducing  cAMP  levels  
Β1,  β2,  β3-­‐  activates  AC  rises  cAMP  levels  
Dopamine  receptors  :  D1A  activates  AC  and  D1B  inhibits  
Serum  conc
...
8  nmol/L,  Adrenaline  =  0
...
   
Catecholamines  are  NT  which  are  metabolized  to  urinary  excretion  products
...
   

 
Oxidative  deamination  of  neurotransmitters  catalysed  by  Monoamine  oxidase  (MAO)  present  in  the  
cytosol  of  presyp  terminal,  adjacent  glial  cells,  ery,  producing  ALDEHYDES
...
 ALSO,  the  hydroxyl  group  can  be  methylated  by  aldehyde  
reductase  to  produce  3-­‐methoxy-­‐4hydroxy-­‐phenyl-­‐etilenglycol
...
   MAO  also  inactivates  SEROTONIN
...
 
Two  types  of  MAO  :  MAO  A  –  specific  to  NA  and  serotonin;  inhibited  by  clorgyline  
                                                                       MAO  B  –  specific  to  dopamine  and  histamine  ;  inhibited  by  deprenyle  

 
Stress    
Epinephrine,  cortisol  and  corticosterone  are  major  stress  hormones
...
 
The  level  of  epinephrine  is  controlled  in  part  through  its  biosynthesis  by  the  final  enzyme  in  the  
catecholamine  pathway,  phenylethanolamine  N-­‐methyltransferase  (PNMT)
...
 Adrenocorticotropic  hormone  (ACTH)  and  the  SNS  enhance  activity  of  
tyrosine  hydroxylase  and  dopamine  β-­‐hydroxylase,  thereby  stimulating  release  of  epinephrine  
precursors
...
   
Diseases  
Parkinson’s  disease  :  decrease  in  dopamine  levels  in  CNS  because  of  deficiency  of  a  few  cells  that  
produce  dopamine
...
 Characterised  by  tremor,  bradykinesia  (slow  movement  and  unstable  posture)
...
 This  is  because  it  can  
cross  the  blood-­‐brain  barrier
...
 the  dopamine  and  L-­‐DOPA  released  by  this  tissue  is  presumed  to  
replace  that  lost  due  to  degeneration  of  substantia  nigra
...
 Excess  of  dopamine  in  the  limbic  cortex  is  observed  in  Schizophrenia
...
 Melanins  and  Thyroid  hormones-­‐  Synthesis  and  degradation
...
 MIT  =  monoiodotyrosine,  DIT  =  diiodotyrsine  The  thyroid  
gland  concentrates  iodine  against  its  cocentr
...
the  ratio  of  I-­‐  in  thyroid  to  it  in  serum  is  25:1
...
 Iodination  reaction  catalysed  by  iodoperoxidases
...
 Mature  thyoglobin  is  inactive  but  its  active  forms  T3  and  T4  are  
produced  by  lysosomal  proteolysis  of  thyr
...
 As  T3  and  
T4  are  nonpolar,  they  are  transported  in  the  bloodstream  bound  t  plasma  carrier  proteins,  mainly  
thyroxine  binding  globulin  but  also  prealbumin  and  albumin
...
   
Abnormal  levels  of  thyroid  hormones  
Hypothyroidism  is  characterized  by  lethargy,  obesity  and  cold  dry  skin,  whereas  Hyperthyroidism  has  
the  opposite  effects
...
 
Second  is  thyroid  gland  failure  called  autoimmune  thyroiditis  or  Hashimoto’s  thyroiditis,  a  form  of  
thyroid  inflammation  caused  by  patient’s  own  immune  system
...
   
 
 
 
 

 
Melanins  

L-­‐DOPA  is  the  precursor  for  the  black  skin  
pigment  melanin
...
   
Albinism-­‐  could  result  from  defectiveness  of  enzymes  that  are  involved  in  melanin  production
...
   
Viteligo-­‐  local  deficiency  of  melanin  is  treated  with  psoralines-­‐pland  compounds
...
 The  
acute  form  is  associated  with  liver  failure,  a  cabbage  like  odour,  death  within  1st  year  of  life
...
 Treatment:  low  tyrosine,  low  Phe  diet
...
 Metabolism  of  Tryptophan
...
   

 
The  main  products  of  degradation  :  Alanine  (from  3-­‐Hydroxykynurenine),  acetaoacetate
...
   
1st  step  =  oxidation  by  tryptophan  pyrolase-­‐dioxygenase
...
   
2nd  step  =  Hydrolysis  of  formyl  group  by  kynurenine  formylase
...
   
4th  step  =  kynureninase  is  PLP  requiring  enzyme  that  catalyzes  conversion  of  hydroxykynurenine  to  
alanine  and  hydroxyantranilate
...
   
Picolinic  acid  –  primary  chelator  in  the  body  for  minerals  like  Cr,  Zn,  Fe,  Mo,  Cu,  Mn
...
 It  is  a  ferro-­‐porphyrin  metalloprotein,  induced  in  liver  by  
corticosteroids  and  Trp
...
   
Abnormal  metabolism  :  Occurs  in  VitB  deficiency
...
   
Pellagra  results  from  dietary  deficiency  of  nicotinamide,  resutin  in  reduced  levels  of  NAD+  and  
reduced  synthesis  of  Trp
...
 Metabolism  in  red  blood  cells
...
 So  some  equations  
might  not  make  sense  as  I’m  clueless  as  to  how  to  type  them  out
...
 Sorry  in  advance
...
 Red  Underlining=  Metabolite
...
 
v RBC  functions=  Oxygen  transport  (lungs  to  cell)  
                                                       Carbon  transport  (cells  to  lungs)  
                                                       Buffer  Role  (H+  +  HCO3~  à  H20+CO2)  
v Biconcave  shape
...
 
v Number  of  RBC  in  circulation  =  2
...
 
v Haemoglobin  levels  =  14-­‐18  g/dL  
v Haematocrit  level  (the  volume  of  packed  red  blood  cells)=  men-­‐42-­‐52%      women-­‐  37-­‐47%
...
 1%  of  RBC  population  is  replaced  daily
...
 RBC  have  high  affinity  glucose  transporters  –  work  at  75%  of  their  
Tmax  (transport  maximum)
...
 Glucose  enters  cell
...
   
2,3-­‐BPG=  reduces  the  affinity  of  Hb  for  02  –  decreases  02  binding
...
 
Nucleotide:  (number  6  in  pic)  RBC  contains  adenosine  deaminase  in  
order  to  breakdown  adenine
...
 
So  metabolism  of  glucose  produces  lactate*  and  ATP*
...
 
When  G6P  is  reduced  to  F6P,  NADPH2*  is  produced
...
 
 
GSSG  is  the  oxidized  form  of  GSH,  it  is  oxidized  during  the  conversion  
of  H2O2  àH2O
...
   
AUTO-­‐OXIDATION  of  Haemoglobin  to  methmeglobin*  produces  
superoxide*
...
 H2O2  is  converted  to  H2O  +  O2  
by  catalase
...
 
H2O2  can  also  be  converted  to  OH’  +  OH-­‐  by  iron
...
 If  the  iron  is  oxidized  to  3+  then  the  methmeoglobin  
formed  cannot  transport  oxygen
...
 For  this  reason  RBC  has  a  cytochrome  b5  reductase  enzyme,  
which  reduces  cytochrome  b5  along  with  NADPH2  (produced  in  PPP),  this  is  the  NADPH-­‐  dependant  methemoglobin  
reductase  system
...
 Enzyme  used  in  PPP  to  convert  G6P  
to  F6P
...
 Cant  convert  GSSG  àGSH,  thus  it  cannot  dispose  of  H2O2/02’
...
 The  presence  of  Heinz  bodies  
indicate  oxidative  stress  

65
...
 
 
Neutrophil  functions:    
1
...

3
...

5
...
 
Pentose  Phosphate  Pathway
...
 
Phagocytic  cells  à(metabolism  of  pathogens)  initiates  acute  inflammatory  response  by  the  following  
actions:  
• Increase  of  vascular  permeability  (increases  blood  flow)  
• Increase  in  neutrophils  (migration  to  infected  sites)  
• Activation  of  platelets  
• Decrease  in  swelling  (if  microorganism  is  dealt  with)          

STEP  ONE:  MIGRATION
...
 They  pass  
through  the  capillaries  and  adhere  to  the  endothelial  cells  –  through  use  of  INTEGRINS  (adhesive  surface  proteins)
...
 
STEP  TWO:  ACTIVATION
...
 (Activation  of  neutrophils  is  
similar  to  activation  of  platelets  which  is  explained  further  on)  The  Ag-­‐Ab  complexes  interact  with  the  Neutrophil  
receptors
...
   

IP3=  increases  intracellular  Ca2+  levelsàessential  for  induction  of  respiratory  burst
...
 Neutrophil  is  activated
...
 
Activated  neutrophil  engulfs  the  bacteria  and  digests  it,  the  leukocytes  now  as  an  increase  in  its  oxygen  
consumption,  this  is  called  a  respiratory  burst
...
 It  reacts  with  electrons  releases  from  the  ETC
...
 Superoxide’s  outside  the  
phagosome  in  the  cytosol  is  converted  to  H2O2,  via  superoxide  dismutase
...
   
STEP  FOUR:  
After  activation  the  neutrophils  release  serine  proteases  into  the  extracellular  environment
...
 Can  activate  receptors  and  cleave  the  adhesive  molecules
...
 In  order  for  them  to  be  regulated,  the  
body  produces  anti  proteinases,  which  are  present  in  extracellular  fluid  and  plasma
...
 Responsible  for  the  green  colour  of  pus
...
(in  the  place  of  Cl,Br  or  SCN  could  also  
be  used)  Also  produces  a  tyrosyl  radical  both  are  used  to  kill  bacteria
...
 Platelets  undergo  three  steps  of  activation  so  haemostasis  can  
occur
...
Adhesion  to  exposed  collagen  in  blood  vessels  à  binds  via  specific  receptors  (integrin),  also  binds  to  Van  
Willebrand  Factor  (a  glycoprotein  secreted  by  endothelial  cells)  
2
...
 
3
...
 Phospholipase  C  hydrolyses  phosphatidylinositol  bisphosphate  into  DAG  and  IP3
...
 One  of  the  chemicals  released  is  ADP,  can  activate  additional  platelets
...
 
The  alteration  of  shape  results  in  a  collagen  induced  activation  of  platelet  phospholipase  A2  =  release  of  arachnoidic  
acid  and  this  is  converted  to  thromboxane  A2,  which  causes  further  platelet  aggregation
...
 
 
 
Regulation  of  clotting  and  thrombosis:  
Endothelial  cells  produce  Prostacyclin
...
 It  also  stimulates  the  activity  of  adenyl  cyclase,  thus  increasing  cAMP  activity,  resulting  in  a  
decrease  in  intracellular  Ca2+  levels
...
 Biochemistry  of  the  liver
...
                                                   Role  of  
cytochrome  P450
...
 IT’S  A  BIT  LENGHTY
...
Excretory:  Bile  Acids:  formed  in  the  liver  from  the  cholesterol
...
Synthetic:  proteins:  albumin,  via  globulin,  b  globulin,  deamination  of  glutamate(released  nitrogen  group=urea)  
3
...
 Via  oxi,red,conjugation
...
 This  causes  a  series  of  changes  in  the  liver:  

Stimulates:  Glycolysis                                                                                                                                            Inhibits:  Gluconeogenesis    
                                         Glycogenesis  (formation  of  glycogen  from  sugar)                                                (synthesis  of  glucose  from  non  carbs)                                                    
                                         Increase  in  fatty  acid  synthesis
...
 Processes  occur  in  order  to  limit  blood  glucose  levels  
EARLY  FASTING  STATE:  Blood  glucose  levels  drop
...
 Increase  in  glucagon
...
 The  liver  and  muscles  use  fatty  acid  as  a  fuel  source  
in  order  to  compensate  for  the  lack  of  glucose
...
 
EXTENDED  FASTING  STATE:  When  glucose  levels  are  extremely  low,  adipose  tissues  release  fatty  acids,  which  are  
converted  by  the  liver  to  ketone  bodies,  which  are  used  by  the  brain
...
 (Gluconeogenesis)  
The  nitrogen  is  excreted  as  urea
...
 
Xenobiotic  transformation  takes  place  in  the  liver
...
 
Occurs  in  smooth  endoplasmic  reticulum,  mitochondria,  cytosol  and  lysosomes
...
 
BIOTRANSFROMATION:  
In  the  first  phase  new  functional  groups  are  inserted  to  the  molecule  of  xenobiotic
...
  These   changes   take  
place  predominantly  in  smooth  endoplasmic  reticulum
...
 Examples  are  as  
follows:  hydrolytic   cleavage  (e
...
  esterases,   peptidases),  oxidation,   reduction,   alkylation,   dealkylation   (O-­‐   or   N-­‐),  
desulfurization  of  thiol  compounds  (change  of  S  for  O)  or  methylation  (O-­‐  or  N-­‐)
...
  Oxidation   (or   rather   oxygenation)  
reactions   are   catalysed   by   enzymes  oxygenases  –   the   most   important   are   so   called  mixed-­‐function   oxygenases
...
 
MFO   have   both   oxidase   and   oxygenase   ability,   i
...
  in   reaction   the   substrate   is   oxygenated   and   NADPH   is   oxidised
...
 
NADPH  +  H+  +  O2  +  RH  →  NADP+  +  H2O  +  R-­‐OH  
Fe3+-­‐P-­‐450-­‐RH  +  e-­‐  (NADPH)  →  Fe2+-­‐P-­‐450-­‐RH  
O2-­‐Fe2+-­‐P-­‐450-­‐RH  +  e-­‐  (NADPH)  →  Fe3+-­‐P-­‐450  +  R-­‐OH  +  H2O  
RH  –  substrate  (xenobiotic)  
Enzyme   system   of   cytochrome   P450   is   huge  heme   protein   family  (heme   binds   O2)
...
 Many   types   of   cytochrome   P450   are   found   in   the   liver,   in   the   adrenal   cortex   (steroid   hormone  
synthesis)  and  in  other  organs
...
 
In   long-­‐term   load   by   particular   compound   there   is   in   a   period   of   few   days  induction   of   synthesis   of   enzymes  of  
endoplasmic   reticulum
...
  This   leads   tofaster   biotransformation  of   all   substances   metabolised   by   this  
particular  enzyme  (i
...
 faster  biotransformation  of  even  different  compounds  than  that  one  that  caused  induction)
...
 Described  effect  dissipates  when  inducing  substances  is  removed
...
  There   are   persons   with  high  
activity  of   particular   enzyme,   therefore   they   are   able   to   metabolise   particular   substances   quickly   (quick  
metabolisers)  and  at  the  same  time  there  are  persons  with  low  activity  of  the  same  enzyme  –  slow  metabolizers
...
 
2)  Dehydrogenases:  
a)  alcohol  dehydrogenase  (ADH)  is  localised  in  hepatocyte  cytoplasm
...
 ADH  is  inducible  enzyme  –  it  is  induced  by  ethanol
...
 
Result  of  the  first  phase  
First  phase  may  have  these  results:  
1)  increased  polarity  of  xenobiotic  
2)  inactivation  of  xenobiotic  (detoxification)  
3)  bioactivation  of  xenobiotic  (pharmaceuticals  X  carcinogens)  –  there  is  potential  danger  of  damage  
Second  (conjugation,  synthetic)  phase  –  conjugation  

Conjugation   is   process   when   xenobiotic   is   bound   to   high  polar   endogenous   compounds(this   is   however   not  
absolutely   true   –   e
...
  binding   of   methyl)
...
e
...
  Both  
enzymes   (transferases),   and  conjugation   agents  (endogenous   substance   that   must   be   in  active   form–   e
...
  UDP-­‐
glucuronate)  are  required  for  conjugation  processes
...
 
Organism  utilizes  these  conjugation  agents:  
1)  Glucuronic  acid  (UDP-­‐glucuronate,  glucuronidation,  UDP-­‐glucuronyltransferase)  
2)  Sulphate  (PAPS  =  phosphoadenosine  phosphosulfate  –  active  sulphate,  esterification)  
3)  Acetate  (acetyl-­‐CoA,  acetyltransferases)  
4)  Cysteine  (glutathione,  glutathione-­‐S-­‐transferases)  
5)  -­‐CH3  (SAM  =  S-­‐adenosyl  methionine,  methyltransferase)  
6)  Glycine,  glutamine  (amidation)  
1)  Glucuronic  acid  
Glucuronic  acid  is  the  most  common  conjugation  agent
...
 Only  this  form  is  able  to  react  with  xenobiotic  molecule  –  conjugation  is  catalysed  by  the  enzyme  UDP-­‐
glucuronyltransferase
...
  In   addition  bilirubin  or   steroids   (i
...
  endogenous   substances)   are   also   excreted   as  
glucuronic  acid  conjugates
...
 Metabolism  in  brain  and  nervous  tissue
...
 
 

Brain  and  nervous  tissues  are  composed  of:  high  cholesterol  levels,  cerebroblasts,  gangliosides  and  phospholipids
...
 However  
when  starvation  occurs  ketone  bodies  (topic  30)  are  used  as  an  emergency  fuel  source
...
 
 
CARBOHYDRATE  METABOLISM:    
GLUCOSE:  in  the  CNS  (Brain&Spinal  Cord)  glucose  undergoes  aerobic  glycolysis
...
 Due  to  its  large  
consumption  of  oxygen,  when  the  body  is  deprived  of  oxygen  the  CNS  goes  into  a  coma  and  is  damaged  irreversibly
...
 As  the  nerve  cells  use  lactate  as  a  fuel  source  (no  B-­‐
Oxidation  in  nerve  cells)  ATP  gained  from  glycolysis  is  used  in  the  Na+-­‐K+ATPase  pump  to  maintain  the  
transmembrane  potential
...
 
GALACTOSE:  converted  to  glucose  and  galactocerebrosides
...
g
...
 There  are  40  different  types  of  neurotransmitters
...
 After  use  neurotransmitters  are  
catabolized  to  urea  and  excreted
...
 In  the  
astroglial  cells  (of  the  brain  and  spinal  cord)  glutamate  and  aspartate  are  synthesised  using  amino  acids  from  
branched  chain  amino  acids  (BCAA)
...
 Glutamine  travels  to  the  cells  of  the  body  and  acts  as  a  glutamate  pre-­‐
cursor
...
                       




The  rate  of  neurotransmitter  synthesis,  within  the  neuron,  is  regulated  by  a  feedback  mechanism
...
 
The  rate  of  synthesis  of  neurotransmitter  is  usually  independent  of  dietary  supply  of  the  pre-­‐cursor  AA  or  of  
the  concentration  of  pre-­‐cursor  AA
...
 

 



 
 
HYPERAMMONIA:  ammonia  diffuses  into  the  brain  and  inhibits  glutaminase
...
   This  occurs  in  astroglial  cells
...
 Glutamate  is  then  converted  to  GABA
...
 
 

 
The  facilitator  neuron  releases  modulator  which  binds  to  the  pre-­‐synaptic  neuron
...
Generates  an  action  potential  which  is  conducted  
along  the  axon
...

2
...

4
...

6
...
 Metabolism  specificity  in  renal  cortex:  
Glycolysis,  Gluconeogenesis,  Renal  glutaminase,  
Buffers,  Amino  acid  metabolism  in  the  kidneys  and  
guts
...
 
Medulla:  Anaerobic  Glycolysis:  poor  blood  supply
...
 
In  fasting  conditions  the  blood  glucose  levels  drop,  this  initiate’s  renal  gluconeogenesis
...
 Glutamine  is  produced  in  the  skeletal  muscle
...
 The  a-­‐ketoglutarate  produced  enters  the  
citric  acid  cycle/Krebs  cycle
...
 AEROBIC  ONLY
...
 The  NH4+  created  
can  not  diffuse  out  of  nephron
...
 
H+  is  formed  from  the  breakdown  of  H2CO3
...
 
H+  also  binds  to  phosphate  ions
...
 
 
 
 
 
 
                                                                                                                                                                                                                                                                 
                                                           
 

 
AMINO  ACID  METABOLISM  IN  THE  KIDNEYS  AND  
GUT:  



The  kidney  metabolises  proteins  of  low  molecular  weight  (9
...
 Albumin  3g  a  day
...
     
Through  synthesis,  degradation,  filtration,  reabsorption  and  urinary  excretion  of  AA
...
SYNTHESIS:    Serine  (3-­‐4g)    
                                           Cysteine-­‐  from  methionine
...
 (phenylalanine  hydroxylase)    
                                           Arginine  (2g)  
2
...
 
                                                           Citrulline  –  used  in  urea  cycle
...
 Produces  10-­‐12g  of  body  total
...
 1
...
 NO  is  a  hormone  mediator(insulin,  IGF-­‐1)  and  a  vasodilator
...
                                                                                                                                                                                                                                                                     
3
...
 
4
...
 

69
...
 
Energetics  of  muscle  contraction  (depending  on  
load  and  type  of  muscle)
...
 Creatine  metabolism
...
 
Protein  degradationà  occurs  during  fasting  to  produce  a  supply  of  AA’s  for  the  body  stimulated  by  
cortisol
...
 Main  product  of  degradation  =  ALANINE
...
 
released  in  to  blood  taken  up  by  the  liver  or  oxidized  to  glutamine  
in  the  muscles  and  other  tissue
...
 The  alanine  is  released  into  the  blood  and  
taken  up  by  the  liver
...
 This  mechanism  aids  in  the  removal  of  
ammonia  from  muscles
...
 
BCAA’s  metabolism:  first  step  is  always  transaminated
...
 It  can  also  be  converted  to  
glutamate  or  alanine
...
 Rate-­‐limiting  enzyme  in  
oxidative  pathway  is  a-­‐keto  acid  dehydrogenase
...
 Used  in  the  same  proportions  initially  but  when  
carbon  stores  are  depleted  FA’s  are  used  as  primary  fuel
...
 
Adrenaline  increases  glycogenolysis,  to  supply  emergency  energy  to  the  muscles  in  flight  or  fight  
response
...
 
Adipose  tissue:  high  energy  reserve
...
   
Degradation  of  TAG  àGLYCEROL  +  FA’s        [by  hormone  sensitive  lipase]  
FA:  bind  to  albumin  in  blood  and  used  as  a  fuel  source
...
 Converted  to  glycerol-­‐3-­‐phosphate
...
 Glycerol  in  the  blood  is  an  indicator  of  lipolysis
...
 
Degradation  of  ketone  bodies  (produced  in  fasting  state)  
Produces  and  consumes  3
...
 Generation  of  this  energy  
depends  on  the  cardiac  environment:  blood  flow,  hormones,  nutritional  intake
...
 This  cycle  can  also  be  found  
in  adipose  tissue
...
   
 
LCFA  breakdown  produces  Acetyl-­‐CoA&NADH-­‐  their  
presence  inhibits  pyruvate  dehydrogenase
...
 So  glucose  is  
no  longer  transported  into  the  cell
...
   
Glucose  uptake=60-­‐70%  
LCFA  uptake=  20%  
 
ENERGETICS  OF  MUSCLE  CONTRACTION:  
Energy  supply  of  the  muscle
...
 Each  fibre  type  differs  in  its  use  of  energy
...
 
Compare  fiber  type  using  table
...
 Its  phosphorylated  to  phosphocreatine
...
 
Another  immediate  energy    
Source:    
ADP+ADPàATP+AMP
...
   
Alanine  +  Glycine  àGlycoamino
...
 Where  it  is  phosphorylated  to  
phosphocreatine
...
 

 
 

Increase  in  blood  creatine  levels  indicates  renal  failure
...
 Biochemistry  of  Connective  Tissue
...
                     Structure  of  
glycosaminoglycans
...

Collagen and elastin are the main proteins of skin, connective tissue, sclera and cornea of the eye, and
blood vessel walls
...
They exhibit special mechanical properties
resulting from unique structure obtained by combining
specific
amino acids into regular elements
...
There are nineteen types of collagen
...

Collagen of bone occurs as fibers arranged at an angle to each other to resist mechanical
shear from
any direction
...
In the cornea of the eye, collagen is stacked so as to transmit light with a minimum of scattering
...
Collagen molecules possess a special triple-helical structure
...
The three polypeptide chains are stabilized by hydrogen bonds
...
This allows interaction
between triple-helical molecules that leads to aggregation of collagen monomers into long fibers
The cc-chains of different collagen types vary in the amino acid content but are almost the same size,
approximately 1000 amino acids in length
...
The most common collagen
...

Collagen contains hydroxyproline and hydroxylysine, which are
...
These
residues result from the hydroxylation of certain proline and lysine residues after their incorporation into
polypeptide chains (posttranslational modification)
...

The hydroxyl group of the hydroxylysine residues of collagen may be glycosylated
...

Biosynthesis of collagen takes place in fibroblasts (or in the related osteoblasts of bone and chondroblasts
of cartilage)
...
Like proteins

synthesized for export, the nascent collagen chains contain a special amino acid sequence at their Nterminal ends
...
The signal sequence
facilitates the passage of the polypeptide chain into the cisternae of the REP
...

The pro-a-chains are processed by proline and lysine residues hydroxylation to form hydroxyproline and
hydroxylysine residues
...
In the case of ascorbic acid
deficiency, collagen fibers cannot be cross-linked, that leads to decreasing the tensile strength
...

Some of the hydroxylysine residues are modified by glycosylation with glucose or glucosylgalactose
...
The procollagen molecules are translocated to the Golgi apparatus, where they are packaged in
secretory vesicles, that are secreted into the extracellular space
...

Collagen molecules spontaneously associate to form ordered, overlapping staggered-pattern fibrils
...
The resulting aldehydes condense with lysyl or hydroxylysyl residues in
neighboring collagen molecules to form covalent crosslinks
...


Degradation of collagen
...
Collagen degradation in the extracellular matrix is
accomplished by collagenases that cleave icollagen fibers into smaller fragments that can be phagocytosed
and degraded by lysosomal enzymes
...

Ehlers-Danlos syndrome; This disorder is a heterogeneous group of generalized connective tissue
disorders that is characterized by
stretchy skin and loose joints, which may be due to any
one of several enzyme deficiencies
...
Retarded wound healing
and a rotated and twisted spine leading to a hump-back appearance are common features of the disease
...
Elastin
In contrast to collagen, which forms fibers that are tough and have high tensile strength, elastin is a
connective tissue protein with rubber-like properties
...
Elastin fibers are
found in the lungs, the walls of large blood vessels, and elastic ligaments
...
Elastin is also
rich in proline and lysine, but as compared with collagen contains little hydroxyproline and no
hydroxylysine
...
The cross-links that are formed by four lysine side chains from four separate elastin chains
are named•a desmosine cross-link
...

Elastin degradation
...
The physiologic role of (IPAT is inhibiting of neutrophil elastase, a protease that is released into
the extracellular space and degrades elastin of alveolar walls as well as other structural proteins in a
variety of tissues
...
Monocytes and alveolar macrophages
synthesized it as well, that is important in the prevention of local tissue injury by elastase
...
This proteolytic activity is inhibited normally by Œ1-AT
...

Smokers with cq-AT deficiency have a considerably elevated rate of lung destruction and poorer survival
rate than do nonsmokers
...

3
...
These compounds have
the special ability to bind large amounts of water, thereby producing the gellike matrix that forms the basis
of the body's ground substance
...

Glycosaminogiycans stabilize and support cellular and fibrous components of tissue and maintain the
water and salt balance of the body
...
Cartilage is rich in ground substance, whereas tendon is
composed primarily of fibers
...
An example of specialized ground substance is
the synovial fluid which serves as a lubricant in joints, tendon sheaths, and bursae
...
The amino sugar is either
D•giucosamine or D-galactosamine in which the amino group is usually acetylated
...
The acidic sugar is either D-glucuronic acid or L-iduronic acid
...

Because of their large number of negative charges, these heteropolysaccharide chains tend to be extended
in solution and are surrounded bv a shell of water molecules
...
When a solution of glycosamifloglycans is compressed, the water is
"squeezed out" and the glycosaminoglycans are forced to occupy a smaller volume
...

Structure of proteoglycans
...
A proteoglycan monomer found in cartilage consists
of a core protein to which the linear carbohydrate chains are covalently attached
...
The species of glycosaminoglycans include
chondroitin sulfate 4 and keratan sulfate
...
The association is not covalent, but occurs primarily through ionic interactions between the
core protein and the hyaluronic acid
...

SYNTHESIS OF GLYCOSAMINOGLYCANS
The polysaccharide chains are elongated by the sequential addition of alternating acidic and

amino sugars, donated by their UDP-derivatives
...
The synthesis of the glycosaminogiycans is analogous to that of glycogen except that the
glycosaminoglycans 14re produced for export from the cell
...
Sulfation of the carbohydrate chain occurs after the
monosaccharide to be sulfated has been incorporated into the growing carbohydrate chain
...
Sulfotransferases cause the sulfation of the
carbohydrate chain at specific sites
...
The protein is then glycosylated by
membrane-bound transferases as it moves through the ER
...

Glycosaminoglycans are degraded intracelularly after phagocytosis and fusion with lysosomes
...

MUCOPOLYSACCHARIDOSES
The mucopolysaccharidoses are hereditary disorders that are clinically progressive and characterized by
accumulation of glycosaminoglycans in various tissues, causing skeletal and extracellular matrix
deformities
...
Hunter's syndrome and Hurler's syndrome are among the
mucopolysaccharidoses resulting from the deficiencies of enzymes required for the degradation of
heparan sulfate and dermatan sulfate
Title: Biochemistry
Description: Comprehensive human biochemistry notes.