Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Further Pure 2
Description: All-In-One Page Notes Revision notes made for the Further Pure 2 Edexcel A-Level module (content will overlap with most pure modules). I've personally condensed the entire module into a clear and detailed overview all on only one page! It contains all the necessary content for that A*. Happy revising :)

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


FP2 Revision Notes
Inequalities
Key Words: sketch, positive
οƒ˜ Use a sketch to best evaluate points of intersection
οƒ˜ Only multiply by POSITIVE values

First order differential equations
Key Words: family of solution curves, separating the variables, integrating factor, transformations
𝑑𝑦

1

οƒ˜
οƒ˜

Series
Key Words: method of differences, partial fractions, sigma notation rules

If

For a 1st order D
...
in the form

𝑑π‘₯

= 𝑓(π‘₯)𝑔(𝑦), then ∫

𝑔(𝑦)

𝑑𝑦 = ∫ 𝑓(π‘₯) 𝑑π‘₯ + 𝑐
𝑑𝑦
𝑑π‘₯

+ 𝑃𝑦 = 𝑄 where P and Q are functions of x, multiply through by the

integrating factor to obtain general solution

𝑛

οƒ˜

When evaluating βˆ‘1 𝑓(π‘Ÿ) consider r=1, r=2, r=3 … then sum and terms will cancel!

οƒ˜

οƒ˜

𝑑𝑦

When using substitutions get y and

in terms of other variables and it should drop out!

If the general term 𝑒 π‘Ÿ = 𝑓(π‘Ÿ) βˆ’ 𝑓(π‘Ÿ + 1) then βˆ‘1𝑛 𝑒 π‘Ÿ = βˆ‘1𝑛 𝑓(π‘Ÿ) βˆ’ 𝑓(π‘Ÿ + 1)

Further Complex Numbers
Key Words: modulus-argument form, principal argument, complex exponential form, de Moivre’s theorem,
binomial expansion, locus of points: circle; perpendicular bisector,
οƒ˜ If 𝑧 = π‘₯ + 𝑖𝑦 then the complex number can be written as 𝑧 = π‘Ÿ(π‘π‘œπ‘ πœƒ + π‘–π‘ π‘–π‘›πœƒ)
οƒ˜ Principal argument: βˆ’πœ‹ < πœƒ ≀ πœ‹
οƒ˜
𝑒 π‘–πœƒ = π‘π‘œπ‘ πœƒ + π‘–π‘ π‘–π‘›πœƒ (can be proved using Maclaurin expansion of 𝑠𝑖𝑛π‘₯, π‘π‘œπ‘ π‘₯ and 𝑒 𝑖π‘₯ )
οƒ˜ Thus a complex number can be written in complex exponential form 𝑧 = π‘Ÿπ‘’ π‘–πœƒ
οƒ˜
π‘π‘œπ‘ (π‘₯) = π‘π‘œπ‘ (βˆ’π‘₯), βˆ’ 𝑠𝑖𝑛(π‘₯) = 𝑠𝑖𝑛(βˆ’π‘₯)
οƒ˜ For 𝑧1 = π‘Ÿ1 (π‘π‘œπ‘ πœƒ1 + π‘–π‘ π‘–π‘›πœƒ1 ) and 𝑧2 = π‘Ÿ2 (π‘π‘œπ‘ πœƒ2 + π‘–π‘ π‘–π‘›πœƒ2 )
o
𝑧1 𝑧2 = π‘Ÿ1 π‘Ÿ2 (π‘π‘œπ‘ (πœƒ1 + πœƒ2 ) + 𝑖𝑠𝑖𝑛(πœƒ1 + πœƒ2 ))
o
𝑧1 /𝑧2 = π‘Ÿ1 /π‘Ÿ2 (π‘π‘œπ‘ (πœƒ1 βˆ’ πœƒ2 ) + 𝑖𝑠𝑖𝑛(πœƒ1 βˆ’ πœƒ2 ))
o
Can be proved using trig identities
𝑧

Second order differential equations
Key Words: auxiliary quadratic, general solution, complementary function, particular integral

οƒ˜
οƒ˜
οƒ˜

For roots to the aux equation, the general solution to the 2nd order D
...
is…
o
𝑦 = 𝐴𝑒 𝛼π‘₯ + 𝐡𝑒 𝛽π‘₯ (distinct roots 𝛼 and 𝛽)
o
𝑦 = (𝐴 + 𝐡π‘₯)𝑒 𝛼π‘₯ (repeated root 𝛼)
o
𝑦 = π΄π‘π‘œπ‘ πœ”π‘₯ + π΅π‘ π‘–π‘›πœ”π‘₯ (imaginary roots Β±π‘–πœ”)
o
𝑦 = 𝑒 𝑝π‘₯ (π΄π‘π‘œπ‘ π‘žπ‘₯ + π΅π‘ π‘–π‘›π‘žπ‘₯) (complex roots 𝑝 Β± π‘–π‘ž)

οƒ˜

For π‘Ž

𝑑2𝑦
𝑑π‘₯ 2

o

οƒ˜
οƒ˜

οƒ˜

𝑧 βˆ’ = 2𝑖 π‘ π‘–π‘›πœƒ

o

π‘§π‘›βˆ’

1
𝑧

𝑛

o
Can be proved using 𝑧 = π‘Ÿ(π‘π‘œπ‘ πœƒ + π‘–π‘ π‘–π‘›πœƒ)
𝑧 = π‘Ÿ(π‘π‘œπ‘ πœƒ + π‘–π‘ π‘–π‘›πœƒ) = π‘Ÿ(π‘π‘œπ‘ (πœƒ + 2π‘˜πœ‹) + 𝑖𝑠𝑖𝑛(πœƒ + 2π‘˜πœ‹))
To remove a modulus (using Pythagoras’ theorem):
|𝑧| = π‘˜
o
o
∴ |π‘₯ + 𝑖𝑦| = π‘˜
o
∴ π‘₯ 2 + 𝑦2 = π‘˜2
To remove an argument:
o
π‘Žπ‘Ÿπ‘”(𝑧) = πœƒ
o
π‘Žπ‘Ÿπ‘”(π‘₯ + 𝑖𝑦) = πœƒ
𝑦
o
= π‘‘π‘Žπ‘› πœƒ (adjust accordingly depending on quadrant)
π‘₯

οƒ˜
οƒ˜

For a complex number w, 𝑀 = 𝑒 + 𝑖𝑣
For a transformation T from the z-plane to the w-plane:
o
𝑀 = 𝑧 + π‘Ž + 𝑖𝑏 is a translation ( π‘π‘Ž)
o
o

𝑀 = π‘˜π‘§ is an enlargement scale factor k centre (0,0)
𝑀 = 𝐾𝑧 + π‘Ž + 𝑖𝑏 is an enlargement scale factor k centre (0,0) followed by translation ( π‘π‘Ž)

+ 𝑐𝑦 = 𝑓(π‘₯)
𝑑2𝑦

𝑑𝑦

Then solve for particular integral
If 𝑓(π‘₯) is in the form… then try…
ο‚§
π‘˜β†’ π‘Ž
ο‚§
π‘˜π‘₯ β†’ π‘Žπ‘₯ + 𝑏
ο‚§
π‘˜π‘₯ 2 β†’ π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐
ο‚§
π‘˜π‘’ 𝑝π‘₯ β†’ 𝐴𝑒 𝑝π‘₯
ο‚§
π‘šπ‘π‘œπ‘ πœ”π‘₯ β†’ π‘Žπ‘π‘œπ‘ πœ”π‘₯ + π‘π‘ π‘–π‘›πœ”π‘₯
ο‚§
π‘šπ‘ π‘–π‘›πœ”π‘₯ β†’ π‘Žπ‘π‘œπ‘ πœ”π‘₯ + π‘π‘ π‘–π‘›πœ”π‘₯
ο‚§
π‘šπ‘π‘œπ‘ πœ”π‘₯ + π‘›π‘ π‘–π‘›πœ”π‘₯ β†’ π‘Žπ‘π‘œπ‘ πœ”π‘₯ + π‘π‘ π‘–π‘›πœ”π‘₯
General solution is 𝑦 = 𝐢
...
E
Title: Further Pure 2
Description: All-In-One Page Notes Revision notes made for the Further Pure 2 Edexcel A-Level module (content will overlap with most pure modules). I've personally condensed the entire module into a clear and detailed overview all on only one page! It contains all the necessary content for that A*. Happy revising :)