Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Trigonometric Functions
Description: The notes provides concepts & formulas on trigonometric functions. There are large number of worked out examples on various problems involving trigonometric functions. A large set of practive problems are provided with full detailed solution to each one of them provided separetly
Description: The notes provides concepts & formulas on trigonometric functions. There are large number of worked out examples on various problems involving trigonometric functions. A large set of practive problems are provided with full detailed solution to each one of them provided separetly
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Page 1Page 1 of 42
Trigonometric
Functions
Learning Outcome
Sketch and use graphs of the sine, cosine and tangent functions
Use the exact values of the sine, cosine and tangent of 30°, 45°, 60°
Use the notations sin−1x, cos−1x, tan−1x to denote the principal values of the inverse
trigonometric relations
Find all the solutions of a trigonometry equation lying in a specified interval
Find the general solution of a trigonometry equation
Use properties and graphs of all six trigonometric functions for angles of any
magnitude
Use trigonometry identities and formulas for the simplification and exact evaluation of
expressions and in the course of solving equations, and select an identity or identities
appropriate to the context, showing familiarity in particular with the use of:
sin
≡ tan θ and sin2θ + cos2θ ≡ 1
cos
sec2 θ ≡ 1 + tan2 θ and cosec2 θ ≡ 1 + cot2 θ
the expansions of sin(A ± B), cos(A ± B) and tan(A ± B)
the formulae for sin 2A, cos 2A and tan 2A
the expressions of a sin θ + b cos θ in the forms R sin(θ ± α) and R cos(θ ± α)
,
Contents
Concepts & Formulas
Examples
Practice Problems
Suggested Solution to All Practice Problems
1
...
1 INTRODUCTION
Radian
The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is 1
radian
1o=
r
r
r
radian
180 o
180 o
1 radian =
1o = 60’
Positive &
Negative
Angles
A positive angle is measured in an
anticlockwise direction
A negative angle is measured
clockwise direction
in a
1
...
3 GRAPHING TRIGONOMETRY FUNCTIONS
Terminology
The graphs of sin, cosine and tangent are known as periodic since they repeat
themselves over and over again
...
The fixed interval is
called the period
...
The
period of the graph is 3600
...
2
2
y R
3
,
...
0
Examples
EXAMPLE 1
Convert the following angles in degree to radians in terms of π:
a)
300
b)
600
c)
1200
d)
1750
e)
2000
Suggested Solution
a)
30 0
30
radians
180
6
b)
600
60
radians
180
3
c)
1200
120 2
radians
180
3
d)
1750
175 35
radians
180
36
e)
2000
200 10
radians
180
9
EXAMPLE 2
Convert the following angles in radians to degrees ( Take π=3
...
5 radians
b)
2
...
82π radians
d)
1
...
19π radians
Suggested Solution
1
...
93 0
3
...
93 60 ' 56 ' )
a)
1
...
82 radians
e)
2
...
05 0
3
...
19 radians
1
...
26 0
3
...
34 radians
d)
1
...
67 180
95
...
142
95 o 40 '
2
...
46 0
3
...
5)
c)
d)
7(0
...
3090)
6
...
5
EXAMPLE 5
EXAMPLE 4
If A is an acute angle, and sin A
7 cos 223 0 5 sin 198 0
1
, find the
2
exact values of sin 2A
Given that sin x
12
4
, sin y and both the
13
5
angles x and y are in the first quadrant, find the
values of cos(y-x)
Suggested Solution
Suggested Solution
If sin A
1
3
1
cos A
and tan A
2
2
3
sin 2 A
2 sin A cos A
1 3
2
2 2
3
2
Trigonometry Functions
If sin x
12
5
12
cos x and tan x
13
13
5
If sin y
4
3
4
cos y and tan y
5
5
3
cos( y x)
cos y cos x sin y sin x
3 5 4 12
...
5 for 0°≤ x ≤360°},
B = {x : cos (x – 30°) = – 0
...
Find the elements of
(i) A,
(ii) A B
EXAMPLE 7
Given that tan 6 , find the exact value of
tan 45
Suggested Solution
tan tan 45
1 tan tan 45
6 1
1 6
5
7
tan 45
Suggested Solution
cos( x 30) 0
...
5
x 30, 150
x 150, 270
(i)
A = {300, 1500}
(ii) A B={300, 1500, 2700 }
EXAMPLE 8
EXAMPLE 9
Given that sin x = p and cos x = 2p, where x is
acute, find the exact value of p and the exact value
of cosec x
...
Method 1
Method 2
sin x
p 1
tan x
cos x
2p 2
sin x cos x 1
Suggested Solution
2
2
p 2 2 p 1
2
5 p2 1
1
5
1
p
5
p2
From the triangle,
1
sin x p
5
1
p
5
cosec x
1
1
1
1
sin x p
sin
1
3
2
3
sin
cos sin
1
3
2
1
3
3
1
3
3
2 3 3
5 ( Answer )
5
cos
3
( 3 )( 6 3 )
( 3 )( 6 3 )
3( 6 3)
3( 6 3)
18 3
3
3
9 2 3
2 1
3
1 2 ( Answer )
Trigonometry Functions
Page 8
EXAMPLE 10
EXAMPLE 11
If sin x t , and x radians, express in
Solve the equation sin 2 x 2 cos 2 x , for
0 0 x 180 0
...
4
o
Suggested Solution
a)
or 243
...
7 or 121
...
b) 3 sin x tan x 8 can be written as 3 cos 2 x 8 cos x 3 0
Suggested Solution
a) 2 tan 2 cos 3
2
sin 2
cos 3
cos 2
2(1 cos 2 ) 3 cos
3 sin x tan x 8
sin x
3 sin x
8
cos x
3 sin 2 x 8 cos x
2 2 cos 2 3 cos
3(1 cos 2 x) 8 cos x
2 cos 2 3 cos 2 0
3 3 cos 2 x 8 cos x
b)
3 cos 2 x 8 cos x 3 0
Trigonometry Functions
Page 9
EXAMPLE 15
Solve each of the following equations giving all solutions in the given interval
a)
2 tan 2 x 2, for 0 0 x 180 0
...
Suggested Solution
a)
b)
2 tan 2 x 2
tan 2 x 1
3 cos x 1
1
cos x
3
1
x cos 1
3
0
x 54
...
5 0 , 112
...
2 sin A cos A
cos A
2 sin 2 A
1 cos 2 A ( Shown)
Note : cos 2 A 1 2 sin 2 A
c)
b)
1 sin x
cos 2 x
1 sin x
1 sin 2 x
1 sin x
(1 sin x)(1 sin x)
1
( Shown)
1 sin x
1 tan 2 x
1 tan 2 x
sin 2 x
1
cos 2 x
sin 2 x
1
cos 2 x
cos 2 x sin 2 x
cos 2 x
...
Solve the equation 2 cos 2 x sin x 1 0 , giving
all solutions in the interval 0 0 x 360 0
Suggested Solution
Suggested Solution
3 3 sin x cos x
sin x
1
cos x 3 3
1
tan x
3 3
Since range of x :
180 0 x 180 0
00 x 1800
1800 x 00
x 48
...
6)
x 48
...
4
x = 48
...
40, 2700
EXAMPLE 19
EXAMPLE 20
Solve the equation
3 sin x 70 8 cos x 70 7 0 ,
for 0 0 x 180 0
o
Show that
tan
4t 1 t 2
1 6t 2 t 4
, where t tan
...
75
x 10
...
10
4 sin 2 x 2 sin x 1 0
4 sin x 3
x 10
...
9)
0
2(1 2 sin 2 x) sin x 1 0
4 sin 2 x sin x 3 0
(4 sin x 3)(sin x 1) 0
1
x tan 1
3 3
x 10
...
1 t 2 1 t 2 1 t 2 4t 2
2
4t 1 t
1 2t 2 t 4 4t 2
4t 1 t 2
( Shown)
1 6t 2 t 4
3 sin 2 x 70 0 8 cos x 70 o 7 0
Let x 70 0
3 sin 2 8 cos 7 0
3(1 cos 2 ) 8 cos 7 0
3 3 cos 2 8 cos 7 0
3 cos 2 8 cos 4 0
3 cos 2 8 cos 4 0
(3 cos 2)(cos 2) 0
2
cos OR cos 2 (N/A)
3
131
...
2
Hence,
x 70
x 131
...
2-70
x 61
...
2 0 ( Answer )
Note:
Use Compound-Angle Formula
tan( A B)
Trigonometry Functions
tan A tan B
1 tan A tan B
Page 11
EXAMPLE 21
EXAMPLE 22
Solve the following equation giving all solutions
in the given interval , cos 3x cos x 0 , for
0 0 x 180 0
...
Suggested Solution
Suggested Solution
cos 3x cos x 0
2 cos
3x x
3x 1
cos
0
2
2
2 cos 2 x cos x 0
2 sin 3 x 2 sin 2 x sin x 1 0
2 sin 2 xsin x 1 sin x 1 0
(sin x 1)(2 sin 2 x 1) 0
2 cos x(2 cos 2 x 1) 0
2 cos x 0
2 cos 2 x 1 0
cos 2 x 0
x 90 0
2 x 90 0 ,270 0
sin x 1
x 90
sin 2 x 0
...
5
x 45, 135, 225, 315
x 45 o ,135 o
x 45 o , 90 0 , 135 0
2 sin 2 x 1 0
x 45 o , 90 o , 135 o , 225 o , 315 o
Note
cos A cos B 2 cos
A B
A B
cos
2
2
EXAMPLE 23
EXAMPLE 24
Solve the following equation giving all solutions
in the given interval
Solve the following equation, giving all solutions
in the given interval
2 sin x 1 2 cos x
5, 0 x 360 0
1 cos x
sin x
sin 6 x sin 2 x 2 sin 4 x, 0 x 1800
Suggested Solution
Suggested Solution
sin 6 x sin 2 x 2 sin 4 x 0
1
1
2 sin (6 x 2 x) cos (6 x 2 x) 2 sin 4 x 0
2
2
2 sin 4 x cos 2 x 2 sin 4 x 0
2 sin 4 x(cos 2 x 1) 0
2 sin 4 x 0
sin 4 x 0
4 x 0,180,360,540,720
x 0,45,90,135,180
Note:
sin A sin B 2 sin
A B
A B
cos
2
2
cos 2 x 1
2 x 0,360
x 0,180
2 sin x 1 2 cos x
5
1 cos x
sin x
2 sin x
...
6)
x 36
...
10
Trigonometry Functions
Page 12
EXAMPLE 25
Express 7 cos 24 sin in the form
R cos( ) , where R > 0 and 0 0 90 0 ,
giving the exact value of R and the value of
correct to 2 decimal places
Suggested Solution
EXAMPLE 26
Express cos 3 sin in the form
1
R cos , where R 0 and 0 ,
2
giving the exact values of R and
...
(1)
R sin 24
...
(1)
R 2 cos 2 1 R 2 sin 2 3
R 576 49 625 R 25
2
cos
cos 3 sin R cos cos R sin sin
(1) 2 (2) 2 :
2
3 sin R cos( )
R sin 3
...
74
25
1
2
cos 1
1
1
60 0 or
2
3
EXAMPLE 27
Find all acute angles for which cos 4 2 cos 2 0
...
cos(2 2 ) 2 cos 2 0
(cos 2 cos 2 sin 2 sin 2 ) 2 cos 2 0
(2 cos 1) (2 sin cos ) ) 2 cos 0
2
2
2
2
(4 cos 4 4 cos 2 1) 4 sin 2 cos 2 2 cos 2 0
(4 cos 4 4 cos 2 1) 4(1 cos 2 ) cos 2 2 cos 2 0
(4 cos 4 4 cos 2 1) 4 cos 2 4 cos 4 2 cos 2 0
8 cos 4 6 cos 2 1 0
Let cos 2 u
8u 2 6u 1 0
1
1
2
0
4u 1 cos x 4 cos x 2 60
(4u 1)((2u 1) 0
2u 1 cos 2 x 1 cos x 1 45 0
2
2
x 45 0 , 60 0
Trigonometry Functions
Page 13
EXAMPLE 28
If 2 x y
4
,show that tan y
1 2 tan x tan 2 x
...
Suggested Solution
tan y
tan 2 x
4
tan
4
1 tan
tan 2 x
tan 2 x
4
1 tan 2 x
1 tan 2 x
2 tan x
1
1 tan 2 x
2 tan x
1
1 tan 2 x
1 tan 2 x 2 tan x
1 tan 2 x
1 tan 2 x
1 tan 2 x 2 tan x
1 2 tan x tan 2 x
( Shown)
1 2 tan x tan 2 x
tan y
1 2 tan x tan 2 x
1 2 tan x tan 2 x
tan 2
8
8
tan 2
4
8 1 2 tan tan 2
8
8
1 2 tan tan 2
8
8
tan 0
1 2 tan tan 2
8
8
tan 0 0 Denominator 0 Numerator 0
1 2 tan
tan
8
8
tan
2 tan
1 0
8
2 4 4(10(1)
tan
8
2
tan 2
2 1 or - 2 1 (Reject)
8
2 1 ( Shown)
EXAMPLE 29
Find the general solution, in degrees of the following equations
a) tan 3x tan 30 0
b) 5 cos 2 3
Suggested Solution
a)
tan 3x tan 300
3x (180(0) 30), (180(1) 30), (180(2) 30), (180(3) 30),
...
x 600 n 10 where n Z ( Answer )
b)
5 cos 2 3
cos 2 0
...
6
2 53
...
130), (360 53
...
2 360n 53
...
6 0 ( Answer )
Trigonometry Functions
Page 14
EXAMPLE 30
a)
c)
It is given that f(x) = a sin(bx) + c, where a, b and c are integers
...
Find the value of a, of b and of c
...
The maximum value of f is 11, the
minimum value of f is 3 and the period of f is 72 °
...
Find the greatest and least possible values of 26(1 cos ) 8
d)
The function f is such that f ( x) 3 4 cos 2 x , for 0 ≤ x ≤ π
...
( 1)
Minimum : 3 a c
...
(1)
Minimum : 3 a c
...
of cos2x = 1
Least : 34 26(1) 8
Min
...
Given that the amplitude of f is 2 and the period of f is 120°
...
Find the value of p and q
...
Substitute the x-coordinate and the y-coordinate into the equation
1 2 3 tan 3q
3 tan 3q 3
tan 3q 1
3q
4
q
12
( Answer )
Trigonometry Functions
Page 16
EXAMPLE 33
Sketch the graph y 6 sin 2 x 3 , for the domain 0 x 2
...
Suggested Solution
6 sin 2 x 3 0
sin 2 x 0
...
6 5 sin(2 x ) where tan
a)
Show that f(x) can be expressed as
b)
c)
4
3
Find the maximum and minimum values of f(x)
Sketch the graph of y = f(x) for 0 x 2
Suggested Solution
a)
f ( x) 10 cos 2 x 2 sin 2 x 6 sin x cos x
...
(1)
R sin 4
...
a)
Show that f(x)can be expressed as 10 4 sin x
b)
c)
Find the maximum and minimum values of f(x)
Sketch the graph of y = f(x) for 0 x 360
3
Suggested Solution
a)
Let 2 sin x (2 3 ) cos x R sin( x )
2 sin x (2 3 ) cos x R sin x cos R cos x sin
Equate the coefficien ts of cos x and sin x
R cos 2
...
(2)
(1) 2 (2) 2 :
R 2 cos 2 4 R 2 sin 2 12
R 4 12 16 R 4
2
(2) sin 2 3
tan 3
(1) cos
2
3
10 2 sin x 2 3 cos x 10 4 sin x ( Shown)
3
b)
Maximum of f(x)
Happens when sin(x+π/3)=1 f(x) =10 +4(1) = 14
Minimum of f(x)
Happens when sin(x+π/3)=-1 f(x) =10 +4(-1) = 6
c)
Trigonometry Functions
Page 18
3
...
Convert the following angles in degree to radians in terms of π:
a)
2500
b)
3300
c)
5500
d)
7800
e)
10000
2
...
142)
7 radians
a)
12
b)
c)
d)
e)
3
...
0
...
03π radians
7 radians
0
...
Answer:
-0
...
8658
Answer:
6
...
Find the elements of the set A
16/65
Answer
-16/63
Answer : A 00 , 600 , 1200 , 1800
3
1
9
and x sin 1
, show that tan 3x
2
13
10
7
...
Given that tan 6 , find the exact value of :
a) tan 2
b) tan 3
9
...
5
Answer : 12
Answer : 198
35
107
Show that the equation
b)
3 tan 2 cos can be expressed as 2 sin 2 3 sin 2 0
sin cos 2(sin cos ) can be expressed as tan 3
c)
sin x 30 0 2 cos x 60 0 can be written in the form 3 3 sin x cos x
a)
d)
tan30
0
2 tan60
Trigonometry Functions
0
can be written in the form tan 6 3 tan 5 0
2
Page 19
10
Solve each of the following equations giving all solutions in the given interval
a)
sin 2 x 3 cos 2 x 0 for 0 0 x 180 0
...
2 0 ;144
...
3 tan x 2 cos x , for 00 3600
...
Solve each of the following equations giving all solutions in the given interval
(a)
25 cos 73
...
(b)
(c)
(d)
Answer : 20
...
90
17 sin( 61
...
13 sin( x 67
...
40, 186
...
40, 175
...
31) 4 , for 0 0 360 0
Answer : 27
...
40
12
...
Find without the use of a calculator, the exact value of tan ,given that
a) tan( ) 4
b) tan( ) 3 cos( )
2
Answer : a) /9 b)
13
...
/5
Prove the following trigonometry identities
a)
1 sin x
cos x
2
b)
14
...
Prove the identity
sin 3x 3 sin x 4 sin 3 x
18
...
Prove the identity
sin 2 x cos 2 x
1
1 cos 4 x
8
20
...
Solve the following equation, giving all solutions in the given interval
2 cos x 1 sin x
4 cos x, 0 x 360 0
1 sin x
cos x
Answer : 194
...
5
Trigonometry Functions
Page 20
22
...
Prove the identity,
tan x 450 tan 450 x 2 tan 2 x
24
...
correct to 2 decimal places
Answer R 17; 61
...
Express 5 sin x 12 cos x in the form R sin( x ) , where R > 0 and 0 0 90 0 , giving the value
of correct to 2 decimal places
...
380 ;
26
...
Answer : R
26 ; 11
...
Express 9 sin 12 cos in the form R sin , where R > 0 and 0 0 90 0 , giving the
exact value of R and the value of correct to 2 decimal places
...
130 ;
28
...
Prove the identity
30
...
1 4 cos 4 x
Show that
1 cos 2 x sin 2 x
cot x
...
32
...
Solve the equation 5 sec 2 2 x tan 2 x 9 , for 0 x 180 0
Answer : 22
...
7o, 112
...
7o
34
...
Show that cos 5x 16 cos 5 x 20 cos 3 x 5 cos x
a)
b)
Prove that sin 2 cosec sec 4 cos 2
i) Solve for 0 0 180 0 the equation sin 2 2 cosec 2 sec 2 3
2
2
2
ii) Find the exact value of cosec 2 150 sec 2 150
Answer : b) i)20
...
i)
Show that the equation tan(60 0 ) tan(60 0 ) k can be written in the form
2 3 (1 tan ) k (1 3 tan )
2
2
ii) Hence solve the equation tan(60 0 ) tan(60 0 ) 3 3
giving all solutions in the interval 0 0 180 0
Answer : ii) 16
...
2
37
...
Prove that tan A tan B tan C tan A tan B tan C,
38
...
6
39
...
1o , the general solution of the equation
4 sin 2 x cos x tan 2 x
40
...
9 nZ
Find, correct to 0
...
or 180(n) 10
...
34) , n Z
42
...
Find the general solution, in degrees, of the equation (7 sin x 3)(3 sin x 2)(4 sin x 1) 0
Answer : 360n 25
...
6 or 360n 41
...
2 or 360n 138
...
5
44
...
Find
a)
The amplitude of f
b)
The period of f
Trigonometry Functions
Page 22
45
...
Write down the
equation of the resulting graph
46
...
The function f is defined for 0 0 x 180 0 , by f ( x) 3 cos 4 x 1
a) State the amplitude and period of f
b) State the maximum and minimum values of f
...
: -4
48
...
Answer : ii )
49
...
Express f (x ) in the form R cos( x ) , where R > 0 and
1
0 , giving the value of R and the value of in terms of b
...
State the
relationships between these graphs in terms of geometrical transformations
...
Sketch the curve y cos x sin x for 2 x 2
Trigonometry Functions
Page 23
4
...
8391) 3(0
...
8660) 2(1
...
5)
d)
1
...
6428) 3(0
...
6643)
6
...
Given that sin x 12 , sin y 4 and both the angles x
13
2
a)
b)
12
1
0
...
7 180
105 0
12
0
...
37 radians
21
...
142
1
...
03 radians
59
...
142
7 radians 7 180 252 0
5
5
0
...
78 radians
44
...
142
7
b)
Find the values of each of the following
a)
4 tan 3200 3 cos 1420
c)
Convert the following angles in radians to degrees
( Take π=3
...
2
cos 2A
tan 2A
5
and y are in the first quadrant, find the values of:
a)
sin(x – y)
b)
tan(y – x)
Suggested Solution
Suggested Solution
If sin A
a)
1
3
1
cos A
and tan A
2
2
3
b)
cos 2 A
2 cos A 1
2
2
3
2
2 1
3
1
2
1
2
6
...
Find the elements of the set A
12
5
12
cos x and tan x
13
13
5
4
3
4
If sin y cos y and tan y
5
5
3
If sin x
tan 2 A
2 tan A
1 tan 2 A
2 1
3
2
1 1
3
2
3 3 3
2
3
3
3
3
a)
sin x cos y cos x sin y
12 3 5 4
...
Given that 0 x 1 and x sin 1 3 , show that
2
tan 3x
Given that tan 6 , find the exact value of :
a)
tan 2
b)
tan 3
8
...
3
1 9
9
4
13
4
9
( Shown)
13
9
...
2 cos
cos
3 sin 2 cos 2
3 sin 2(1 sin 2 )
3 sin 2 2 sin 2
2 sin 2 3 sin 2 0 ( Shown)
Trigonometry Functions
b)
sin cos 2(sin cos )
sin cos 2 sin 2 cos
sin 3 cos
sin
3
cos
tan 3 ( Shown)
Page 25
c)
sin x 30 0 2 cos x 60 0
tan 30 0 2 tan 60 0 can be written in the form
d)
can be written in the form 3 3 sin x cos x
tan 2 6 3 tan 5 0
Suggested Solution
Suggested Solution
sin x 30 0 2 cos x 60 0
tan300 2 tan600
tan 30 tan
tan 60 tan
2
1 tan 30 tan
1 tan 60 tan
1
tan
3 tan
3 1
2
1 3 tan
1 3 tan
sin x cos 30 cos x sin 30 2(cos x cos 60 sin x sin 60)
cos x
3
1
3
sin x cos x 2
2 2 sin x
2
2
3
1
sin x cos x cos x 3 sin x
2
2
3
1
sin x
2 3 cos x1 2
1 3 tan
32 3 1
cos x
sin x
2
2
2
2 3 tan
2
1 2 3 tan 3 tan 2 6 4 3 tan 2 tan 2
tan 2 6 3 tan 5 0 ( Shown)
3 3 sin x cos x ( Shown)
10
...
b)
Suggested Solution
0
0
tan x tan 2 x 1, for 0 x 180
Suggested Solution
sin 2 x 3 cos 2 x 0
tan x tan 2 x 1
2 tan x
tan x
1
1 tan 2 x
2 tan 2 x 1 tan 2 x
sin 2 x 3 cos 2 x
sin 2 x
3
cos 2 x
tan 2 x 3
3 tan 2 x 1
1
tan 2 x
3
1
1
tan x
or
3
3
x 30 0 , 150 0 ( Answer )
2 x (180 71
...
6) 0
x 54
...
2 0 ( Answer )
(in the interval 0 x 180)
c)
2 sin x tan x 3 , for 00 3600
...
Suggested Solution
Suggested Solution
3 tan x 2 cos x
sin x
3
2 cos x
cos x
3 sin x 2 cos 2 x
2 sin x tan x 3
sin x
2 sin x
...
5
x 60 0 , 300 0
Trigonometry Functions
cos x 2 (Reject )
3 sin x 2 2 sin 2 x
2 sin 2 x 3 sin x 2 0
(2 sin x 1)(sin x 2) 0
2 sin x 1
sin x 0
...
Solve each of the following equations giving all solutions in the given interval
Suggested Solution
0
0
25 cos 73
...
a)
b)
Suggested Solution
0
0
17 sin( 61
...
Suggested Solution
25 cos 73
...
93) 14
14
sin( 61
...
93 55
...
44)
cos 73
...
6
73
...
130 , 306
...
130 73
...
870 73
...
44 61
...
56 61
...
60 , 126
...
4 0 , 186
...
38) 11 , for 0 0 180 0
c)
0
0
26 cos( 11
...
38) 11
11
sin( x 67
...
38 57
...
2
x 9
...
82
26 cos( 11
...
31 38
...
67
cos( 11
...
00 , 310
...
82, (360 9
...
82,350
...
4 0 , 175
...
Given that tan 2
...
Prove the following trigonometry identities
Suggested Solution
a)
1 sin x
cos x
2
cos x
1 sin x cos x
b)
Suggested Solution
Suggested Solution
1 sin x
cos x
cos x
1 sin x
(1 sin x)(1 sin x) cos 2 x
cos x(1 sin x)
1 2 sin x sin 2 x cos 2 x
cos x(1 sin x)
2 2 sin x
cos(1 sin x)
2(1 sin x)
cos x(1 sin x)
2
( Shown)
cos x
14
...
2
Use this result to explain why
0 0 90 0
tan x(1 cos 2 x)
tan x tan x cos 2 x
sin x sin x
2 cos 2 x 1
cos x cos x
sin x
sin x
2 sin x cos x
cos x
cos x
2 sin x cos x
sin 2 x ( Shown)
a)
2
tan x(1 cos 2 x) sin 2 x
2
Show that 2 sin x cos x 2 can be written in the form
5
3
2 sin 2 x cos 2 x
2
2
Suggested Solution
Suggested Solution
2 sin x cos x
2 sin x cos x)(2 sin x cos x
2
a)
tan 2 sin 2
sin
sin 2
cos 2
sin 2 sin 2 cos 2
cos 2
2
sin
1 cos 2
cos 2
tan 2 sin 2 ( Shown)
2
b)
RHS > 0 → tan2θ > sin2θ
tan θ > sin θ if θ acute
...
cos 3x 4 cos 3 x 3 cos x
Suggested Solution
Prove the identity
sin 3x 3 sin x 4 sin 3 x
Suggested Solution
cos 3 x
sin 3 x
cos(2 x x)
sin( 2 x x)
cos 2 x cos sin 2 x sin x
sin 2 x cos x cos 2 x sin x (Note)
(Note)
(2 cos x 1) cos x (2 sin x cos x)(sin x)
2 sin x cos x cos x (1 2 sin 2 x) sin x
2 cos 3 x cos x 2 sin 2 x cos x
2 sin x cos 2 x sin x 2 sin 3 x
2
2 cos 3 x cos x 2 cos x(1 cos 2 x)
2 sin x(1 sin 2 x) sin x 2 sin 3 x
2 cos x cos x 2 cos x 2 cos x
2 sin x 2 sin 3 x sin x 2 sin 3 x
3
3
4 cos x 3 cos x ( Shown)
3
Note:
18
...
2 sin x cos x) 8 cos 2 x 4
4 cos 4 x 4 cos 2 x 1 4 sin 2 x cos 2 x 8 cos 2 x 4
4 cos 4 x 4 cos 2 x 1 4(1 cos 2 x)(cos 2 x) 8 cos 2 x 4
4 cos 4 x 4 cos 2 x 1 4 cos 2 x 4 cos 4 x 8 cos 2 x 4
8 cos 4 x 3 ( Shown)
19
...
Solve the following equation, giving all solutions in the
interval 0 x 3600
21
...
5
sin x 0
...
Prove the identity,
3 cos x
sin x 0
...
5 0 , 345
...
50 , 345
...
Prove the identity,
tan x 450 tan 450 x 2 tan 2 x
cos x 30 0 sin x 60 0
Suggested Solution
1 or - 0
...
25
...
(1)
(1) 2 (2) 2 :
R 2 64 225 289 R 17 ( Answer )
Express
R 2 cos 2 25 R 2 sin 2 144
R 25 144 169 R 13 ( Answer )
2
Replace R in (1) :
Replace R in (1) :
26
...
(1)
(1) 2 (2) 2 :
R 2 cos 2 64 R 2 sin 2 225
cos
8
17
cos 1
5 sin x 12 cos x R sin x cos R cos x sin
Equate the coefficien ts of cosx and sinx
R sin 12
...
(2)
cos
5 sin x 12 cos x in the form R sin( x ) ,
Express
where R > 0 and 0 0 90 0 , giving the value of correct
to 2 decimal places
...
correct to 2 decimal places
0
cos 1
8
61
...
27
...
380 ( Answer )
13
Express 9 sin 12 cos in the form R sin , where
R > 0 and 0 0 90 0 , giving the exact value of R and the
value of correct to 2 decimal places
...
(1)
R sin 1
...
(1)
(1) 2 (2) 2 :
(1) 2 (2) 2 :
R sin 1 2
...
310 ( Answer )
26
Trigonometry Functions
R 2 cos 2 81 R 2 sin 2 144
R 81 144 225 R 15 ( Answer )
2
Replace R in (1) :
cos
9
15
cos 1
9
53
...
Prove the identity
29
...
2
cos x cos x cos x
1
sin x
2
cos x cos 2 x
1 sin x
cos 2 x
1 sinx
1 - sin 2 x
1 sin x
(1 sin x)(1 sin x)
1
( Shown)
1 sin x
30
...
4
Show that, 1 4 sin x is negative for all values of x
...
Show that 1 cos 2 x sin 2 x cot x
...
33
...
8 or 1
2 x 141
...
3,45,225
x 22
...
7 o , 112
...
7 o ( Answer )
cos 5x 16 cos 5 x 20 cos 3 x 5 cos x
Suggested Solution
cos 5 x
cos(3x 2 x)
cos 3x cos 2 x sin 3x sin 2 x
Expand:
cos 3x cos 2 x
Expand:
sin 3x sin 2 x
(cos 2 x cos x sin 2 x sin x)(2 cos 2 x 1)
sin 3 x sin 2 x
sin(2 x x)2 sin x cos
(sin 2 x cos x cos 2 x sin x)2 sin x cos x
((2 cos 2 x 1) cos x (2 sin x cos x sin x))(2 cos 2 x 1)
(2 sin x cos x cos x (2 cos 2 x 1) sin x)2 sin x cos x
(2 cos 3 cos x (2 sin 2 x cos x))(2 cos 2 x 1)
(2 sin x cos 2 x 2 sin x cos 2 x sin x)2 sin x cos x
(2 cos 3 x cos x (2(1 cos 2 x) cos x))(2 cos 2 x 1)
(4 sin x cos 2 x sin x)2 sin x cos x
(2 cos 3 x cos x (2 cos x 2 cos 3 x))(2 cos 2 x 1)
8 sin 2 x cos 3 x 2 sin 2 x cos x
(4 cos 3 x 3 cos x)(2 cos 2 x 1)
8(1 cos 2 x) cos 3 x 2(1 cos 2 x) cos x
8 cos 5 x 4 cos 3 x 6 cos 3 x 3 cos x
8 cos 3 x 8 cos 5 x 2 cos x 2 cos 3 x
8 cos 5 x 10 cos 3 x 3 cos x
8 cos 5 x 10 cos 3 x 2 cos x
cos 3 x cos 2 x
cos(2 x x)(2 cos x 1)
2
cos 3x cos 2 x sin 3x sin 2 x
8 cos 5 x 10 cos 3 x 3 cos x (8 cos 5 x 10 cos 3 x 2 cos x)
8 cos 5 x 10 cos 3 x 3 cos x 8 cos 5 x 10 cos 3 x 2 cos x
16 cos 5 x 20 cos 3 x 5 cos x ( Shown)
Trigonometry Functions
Page 33
35
...
i)
tan(60 0 ) tan(60 0 ) k can be
written in the form
2 3 (1 tan ) k (1 3 tan )
2
ii)
Find the exact value of
0
2
2
Hence solve the equation
tan(60 0 ) tan(60 0 ) 3 3
cosec 15 sec 15
2
Show that the equation
0
giving all solutions in the interval 0 0 180 0
Suggested Solution
a)
sin 2 2 cos ec 2 sec 2
Suggested Solution
i)
tan(600 ) tan(600 ) k
1
1
sin 2
...
75
2 41
...
6
37
...
7 0 , 159
...
Prove that
tan A tan B tan C tan A tan B tan C,
From part(i), k 3 3
2 3 (1 tan 2 ) 3 3 (1 3 tan 2 )
2(1 tan 2 ) 3(1 3 tan 2 )
2 2 tan 2 3 9 tan 2
11 tan 2 1
tan 2
1
11
1
11
16
...
2 0 ( Answer )
tan
Suggested Solution
A B C 180
A 180 ( B C )
tan 180 tan(B C )
1 tan 180 tan(B C )
0 tan(B C )
tan A
1
tan A tan(B C )
tan A
tan B tan C
tan A
1 tan B tan C
tan A(1 tan B tan C ) tan B tan C
tan A tan A tan B tan C tan B tan C
tan A tan B tan C tan A tan B tan C ( Shown)
Trigonometry Functions
Page 34
38
...
Find, correct to 0
...
6, (180 71
...
6),
...
sin 2 x 0
The general solution : 180n 45 or 180n 71
...
25
sin x 0
x 0,180,360,540
...
63
x 50
...
9) o , (720 50
...
x 360 o n 50
...
Find, correct to 0
...
Find the general solution, in radians, of the equation
sin 2 ( A 30 o ) 4 sin 2 ( A 30 o )
sec x 5 tan x 3 cos x
Suggested Solution
Suggested Solution
sec x 5 tan x 3 cos x
sin 2 ( A 30 o ) 4 sin 2 ( A 30 o )
sin( A 30) 2 sin( A 30)
1
sin x
5
3 cos x
cos x
cos x
1 5 sin x
3 cos x
cos x
1 5 sin x 3 cos 2 x 1 5 sin x
Case 1
sin( A 30) 2 sin( A 30)
sin A cos 30 cos A sin 30 2(sin A cos 30 cos A sin 30)
sin A cos 30 cos A sin 30 2 sin A cos 30 2 cos A sin 30
3 cos A sin 30 sin A cos 30
sin A 3 sin 30
cos A cos 30
1
3 3
tan A 3 tan 30 3
3
3
3 3
A 60,180 60,2(180) 60
...
34 radians or
3
sin x 2 (N/A)
Case 2
sin( A 30) 2 sin( A 30)
sin A cos 30 cos A sin 30 2(sin A cos 30 cos A sin 30)
sin A cos 30 cos A sin 30 2 sin A cos 30 2 cos A sin 30
cos A sin 30 3 sin A cos 30
sin A
sin 30
cos A 3 cos 30
1
1 1
1 3
3
tan A tan 30
3
3
9
3 3 3 3
A 10
...
9o ,2(180) 10
...
General Solution : 180(n) 10
...
9 o
Trigonometry Functions
where n Z
Positve angles:
0
...
34, 3 0
...
34,
...
34, - (0
...
34), - 3 (0
...
The π (ignoring negative) moves in an arithmetic series: π, 2π,
3π, 4π, …
...
34’ alternate between a positive and negative
...
34)
The general solution : n 1n (0
...
Find the general solution, in radians, of the equation
sin 2 x sin 3x
43
Find the general solution, in degrees, of the equation
(7 sin x 3)(3 sin x 2)(4 sin x 1) 0
Suggested Solution
(7 sin x 3)(3 sin x 2)(4 sin x 1) 0
sin 2 x sin 3x
2 sin x cos x sin(2 x x)
7 sin x 3 0
2 sin x cos x sin 2 x cos x cos 2 x sin x
sin x
2 sin x cos x 2 sin x cos x cos x (1 2 sin 2 x) sin x
2 sin x cos x 2 cos 2 x sin x sin x 2 sin 2 x
3
7
2 sin x cos x 2 sin x 2 sin 2 x sin x 2 sin 2 x
3
x sin 1
7
x 25
...
4)
2 sin x cos x 3 sin x 4 sin 3 x
x 25
...
6
2 sin x cos x 2 sin x(1 sin 2 x) sin x 2 sin 2 x
2 sin x cos x 3 sin x 4 sin 3 x 0
sin x(2 cos x 3 4 sin 2 x) 0
3 sin x 2 0
sin x(4(1 cos 2 x) 2 cos x 3) 0
sin x
sin x(4 cos x 2 cos x 1) 0
2
2
x sin 1
3
x 41
...
8)
Solution 1
sin x 0 x 0,180,360,540, x 0, ,2 ,3 ,
...
: x n where n 0, 1, 2, 3
...
8, 138
...
309 or 0
...
5, 345
...
2
2
2
2
x
,
, 2
...
5
5
5
5
3
x 2n
where n 0, 1, 2, 3,
...
4
2 ,
5
x 2n
5
2 ,
5
2 2
...
360n 41
...
6
Or
x ,
5
The period of sin x is 360, hence each of these solutions will repeat
every 3600
Or
cos x 0
...
5), (360 14
...
309
x
2
3
360n 138
...
5
Or
360n 345
...
General Solution :
3
x n OR x 2n OR x 2n
5
5
where n 0
...
2
...
4
...
The function f is given by f(x) = 5sin 3x
...
Amplitude : 5
b)
Period
2
3
The diagram shows the graph of
a)
b)
y f (x) , where f ( x) sin 2 x
State the period of the function f
The graph of y f (x) is stretched parallel to the y-axis with scale factor 3
...
The function f is defined for 0 0 x 180 0 , by
The function f is defined for 0 0 x 180 0 , by
47
...
Sketch the graph of f
Suggested Solution
a)
Amplitude of
f = 3 (Answer)
Suggested Solution
a)
3600
4
period 90 0 ( Answer )
The maximum value for cos ax 1
So,
period
5(1) b 3
b 2 ( Answer )
b)
c)
d)
48
...
Suggested Solution
(i)
(iii)
(ii)
From the sketch above, the other coordinate of intersection is
Trigonometry Functions
2
,3
Page 38
49
...
Express f (x ) in the form R cos( x ) , where R > 0 and 0 1 , giving the value of
2
R and the value of in terms of b
...
State the relationships between these graphs in terms of geometrical transformations
...
(1)
R 1 b 26 R 1 b
R sin b
...
The graph y = cos(x – α) has amplitude
‘1’
...
Sketch the curve
y cos x sin x for 2 x 2
Suggested Solution
cos x sin x R cos( )
Replace R in (1) :
cos x sin x R cos x cos R sin x sin
Equat the coefficine ts of cos x and sin
cos
R cos 1
...
(2)
(1) 2 (2) 2 :
2
2
2
R 11 2 R 2
2 cos( x
4
4
)
4
)|
)
Sketch of the curve y cos x sin
Trigonometry Functions
y | cos x sin x || 2 cos( x
2
Sketch the curve
1
2 4
cos x sin x 2 cos( x
R cos 1 R sin 1
2
1
2
2 cos x
4
Page 40
Trigonometry Functions
Page 41
Trigonometry Functions
Page 42
Title: Trigonometric Functions
Description: The notes provides concepts & formulas on trigonometric functions. There are large number of worked out examples on various problems involving trigonometric functions. A large set of practive problems are provided with full detailed solution to each one of them provided separetly
Description: The notes provides concepts & formulas on trigonometric functions. There are large number of worked out examples on various problems involving trigonometric functions. A large set of practive problems are provided with full detailed solution to each one of them provided separetly