Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Inverse d'une matrice quelconque
Description: utilisation d'Algorithme de Gréville.
Description: utilisation d'Algorithme de Gréville.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
0
...
Son principe intérêt vient du fait qu'il peut fonctionner aussi pour des matrices
non inversibles, conduisant ainsi à la notion de pseudo-inverse
...
1
...
• A+ A+ à l'étape m (Soit les m premières lignes)
...
1
...
On suppose que nous avons
k
k−1
crée A+ matrice donc on a :
k−1
Ak−1 A+ Ak−1 = Ak−1
k−1
A+ Ak−1 A+ = A+
k−1
k−1
k−1
Ak−1 A+ = (Ak−1 A+ )t
k−1
k−1
A+ Ak−1 = (A+ Ak−1 )t
k−1
k−1
on veut A+ avec Ak A+ Ak = Ak et Ak = Ak−1 ak pour avoir un produit de matrice cohérent,
k
k
il faut ajouter une ligne à A+
...
Bk−1
bk
Ak−1 ak
Bk−1 Ak−1 Bk−1 ak
bk Ak−1
b k ak
= Ak−1 Bk−1 Ak−1 + ak bk Ak−1 Ak−1 Bk−1 ak + ak bk ak
1
= Ak−1 ak
alors on trouve un système de deux équations et on cherche Bk−1 et bk :
Ak−1 Bk−1 Ak−1 + ak bk Ak−1 = Ak−1
Ak−1 Bk−1 ak + ak bk ak = ak
Initialisation :
A 1 = a1
1
A+ = at t
1
1
(a1 a1 )
Vérication pour k = 1
On montre que A1 A+ A1 = A1 :
1
A1 A+ A1 = A1 (
1
1
=
(at a1 )
1
=
at
1
)A1
t
a1 a1
(A1 at A1 )
1
1
(at a1 )
1
(a1 at A1 )
1
A1 A+ A1 = A1
1
Si A1 = 0 alors A+ = 0t , donc A1 A+ A1 = A1 :
1
1
On montre que A+ A1 A+ = A+
1
1
1
A+ A1 A+ =
1
1
=
At
At
1
A1 t 1
at a1 a1 a1
1
At
at
1
a1 t 1
at a1 a1 a1
1
At
1
t
a1 a1
=
A+ A1 A+ = A+
1
1
1
Si A1 = 0 alors A+ = 0t , donc A+ A1 A+ = A+
1
1
1
1
On montre que (A+ A1 )t = (A+ A1 ) :
1
1
(A+ A1 )t = At (A+ )t
1
1
1
=
=
at t
t
A1 ( t 1 )
a1 a1
1
at a1
1
(at a1 )
1
=1
(A+ A1 ) = at
1
1
2
1
a1
(at a1 )
1
1
at a1
t
(a1 a1 ) 1
1 = (A+ A1 )t
1
=
=
Si A1 = 0 alors A+ = 0t , donc (A+ A1 )t = (A+ A1 ) :
1
1
1
On montre que (A1 A+ )t = (A1 A+ ) :
1
1
(A1 A+ )t = (A1 At
1
1
=
1
(at a1 )
1
)t
A1 At
1
A1 A+ = A1 At
1
1
=
1
(at a1 )
1
1
(at a1 )
1
+ t
(A1 A1 )
Si A1 = 0 alors A+ = 0t , nous arrivons à l'égalité :(A1 A+ )t = (A1 A+ )
1
1
1
Les propriétés sont vériées au rang 1
...
on suppose
Ak−1 A+ Ak−1 = Ak−1
k−1
A+ Ak−1 A+ = A+
k−1
k−1
k−1
Ak−1 A+ = (Ak−1 A+ )t
k−1
k−1
A+ Ak−1 = (A+ Ak−1 )t
k−1
k−1
on montre que Ak A+ = (Ak A+ )t :
k
k
A+ (I − ak pt )
k
k−1
pt
k
Ak A+ = Ak−1 ak
k
= Ak−1 (A+ (I − ak pt )) + ak pt
k
k
k−1
= Ak−1 A+ − Ak−1 A+ ak pt + ak pt
k
k
k−1
k−1
(I − AK−1 A+ )aK
K−1
or pk =
+
||(I − AK−1 AK−1 )ak ||2
Ak A+ = Ak−1 A+ +
k
k−1
=A
k−1
A+
k−1
(−Ak−1 A+ ak ((I − AK−1 A+ )ak )t + (ak ((I − AK−1 A+ )ak ))t
K−1
K−1
k−1
||(I − AK−1 A+ )ak ||2
K−1
(−Ak−1 A+ ak at − Ak A+ ak at AK−1 A+ + ak at − ak at AK−1 A+ )
k
k
k
k
K−1
K−1
k
k−1
+
+
2
||(I − AK−1 AK−1 )ak ||
d'où
(Ak A+ )t = Ak−1 A+ +
k
k−1
(−ak at AK−1 A+ − Ak A+ ak at AK−1 A+ + ak at − Ak−1 A+ ak at )
k
k
k
k
K−1
K−1
k
k−1
||(I − AK−1 A+ )ak ||2
K−1
car
3
(Ak−1 A+ )t = Ak−1 A+
k−1
k−1
(ak at )t = ak at
k
k
donc :
(Ak A+ )t = Ak A+
k
k
Pour le cas particulier :pk =
(A+ )t A+ aK
K−1
K−1
1 + (A+ )ak 2
K−1
A+ (I − ak pt )
k
k−1
pt
k
Ak A+ = Ak−1 ak
k
= Ak−1 (A+ (I − ak pt )) + ak pt
k
k
k−1
= Ak−1 A+ − Ak−1 A+ ak pt + ak pt
k
k
k−1
k−1
or
Ak−1 A+ ak = ak car (I − AK−1 A+ )ak = 0
K−1
k−1
= AK−1 A+ − ak pt + ak pt
k
k
K−1
= AK−1 A+
K−1
nous avons AK−1 A+ symétrique donc AK A+ est symétrique
...
(A+ )t A+ aK
K−1
K−1
1+||(A+ )ak ||2
K−1
pt ak
k
at (A+ )t A+ aK
= k K−1 + K−1 2
(1 + ||(AK−1 )ak || )
(A+ )ak ||2
K−1
=
(1 + ||(A+ )ak ||2 )
K−1
pt Ak−1 =
k
=
at (A+ )t A+ Ak−1
k
K−1
K−1
+
(1 + (AK−1 )ak 2 )
(A+ Ak−1 A+ ak )t
k−1
k−1
(1 + (A+ )ak 2 )
K−1
(A+ ak )t
k−1
=
(1 + (A+ )ak
K−1
2)
gure :L'organigramme de l'algorithme de Gréville
5
Exemple 1 :
Soit la matrice :
1 −1 1
2
1 −1
A=
1
2
1
−1 1
2
On cherche à calculer Pseudo-inverse
...
3
1
9
3 −1 1 2 ,
Exemple 2 :
Soit la matrice :
5 1 7
A = 1 2 2
7 2 10
On cherche à calculer Pseudo-inverse
...
=
1
676
7
Title: Inverse d'une matrice quelconque
Description: utilisation d'Algorithme de Gréville.
Description: utilisation d'Algorithme de Gréville.