Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Second Order Linear Differential Equations
Description: Explanation of solving homogeneous and non homogeneous second order linear differential equations using both method of undetermined coefficient. and method of variation of parameters

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


1

Second Oder Linear
Differential Equation

2

Introduction
ο‚΄ The general form of second order
ODE
𝑑2 𝑦
𝑑𝑦
π‘Ž2 π‘₯
+ π‘Ž1 π‘₯
+ π‘Ž0 π‘₯ 𝑦 = 𝑓(π‘₯)
2
𝑑π‘₯
𝑑π‘₯
But in this subject proposed, the
coefficient of π‘Ž2 π‘₯ , π‘Ž1 π‘₯ and π‘Ž0 π‘₯ are
treated as constant and become as
𝑑2 𝑦
𝑑𝑦
π‘Ž 2+ 𝑏
+ 𝑐𝑦 = 𝑓 π‘₯
𝑑π‘₯
𝑑π‘₯

3

𝑑2 𝑦
𝑑𝑦
π‘Ž 2+ 𝑏
+ 𝑐𝑦 = 𝑓 π‘₯
𝑑π‘₯
𝑑π‘₯
ο‚΄ If the 𝑓(π‘₯) is zero, the second order ODE said to be
homogenous
...

𝑑2 𝑦
𝑑𝑦
π‘Ž 2+ 𝑏
+ 𝑐𝑦 = 0
𝑑π‘₯
𝑑π‘₯
Or π‘Žπ‘¦ β€²β€² + 𝑏𝑦 β€² + 𝑐𝑦 = 0

ο‚΄ The characteristic equation of the homogenous
equation is
π‘Žπ‘š2 + π‘π‘š + 𝑐 = 0

5

ο‚΄ The characteristic equation is quadratic equation
and solve the quadratic equation and it gives two
roots (π‘š values) in the type of :
Roots of the Characteristic
Equation
1 Real and Distinct
2 Real but Repeated
3 Complex Conjugates, π‘Ž Β±
𝑏𝑖

General solution
𝑦 = 𝐴𝑒 π‘š1 π‘₯ + 𝐡𝑒 π‘š2 π‘₯
𝑦 = 𝐴𝑒 π‘š1 π‘₯ + 𝐡π‘₯𝑒 π‘š1 π‘₯
𝑦
= 𝑒 π‘Žπ‘₯ ( 𝐴 cos 𝑏π‘₯

6

Step to Solve Homogenous
Equation

ο‚΄ Step1: Write the homogenous 2nd order ODE into
characteristic equation (π‘Žπ‘š2 + π‘π‘š + 𝑐 = 0)

ο‚΄ Step 2: Solve the characteristic equation and get its
roots ( real distinct, real repeated or complex roots)
ο‚΄ Step 3: Substitute the corresponding π‘š roots value
into general solution
...


Hence, the solution of this ODE is
𝑦 = 𝐴𝑒 βˆ’4π‘₯ + 𝐡𝑒 2π‘₯
(refer to the Table 2
...

Hence, the solution of this ODE is
𝑦 = 𝐴𝑒 1+
take derivatives of 𝑦
𝑦 β€² = 1 + 3 𝐴𝑒

3 π‘₯

1+ 3 π‘₯

+ 𝐡𝑒 (1βˆ’

3)π‘₯

+ 1 βˆ’ 3 𝐡𝑒

1βˆ’ 3 π‘₯

Given y 0 = 0
𝑦 0 = 𝐴+ 𝐡 =0
𝐴 = βˆ’π΅

9
and 𝑦 β€² 0 = 3

𝑦′ 0 = 1 + 3 𝐴 + 1 βˆ’ 3 𝐡 = 3
1+ 3 𝐴+ 1βˆ’ 3 𝐡 = 3
Using 𝐴 = βˆ’π΅ in [1]
βˆ’2 3𝐡 = 3
1
𝐡=βˆ’
2
1
𝐴=
2
Hence the particular solution is
1
𝑦= 𝑒
2

1+ 3 π‘₯

βˆ’

1 (1βˆ’
𝑒
2

3)π‘₯

Or
1

𝑦=2 𝑒

1+ 3 π‘₯

βˆ’ 𝑒 (1βˆ’

3)π‘₯

1

Or 𝑦 = 2 𝑒 π‘₯ 𝑒

3π‘₯

βˆ’ π‘’βˆ’

3π‘₯

1

Exercise
10

1
...

=0
3
...
2𝑦 β€²β€² + 𝑦 β€² = 0 , 𝑦 0 = 3; 𝑦 β€² 0 = 2

5
...


𝑑2 𝑦
𝑑𝑦
βˆ’ 2 βˆ’ 2𝑦 = 0,
𝑑π‘₯ 2
𝑑π‘₯
𝑦 β€²β€² + 2𝑦 β€² + 4𝑦 = 0

𝑦 0 = 0;

𝑦′ 0 = 3

11

Solving Nonhomogeneous
Equations

𝑑2 𝑦
𝑑𝑦
π‘Ž 2+ 𝑏
+ 𝑐𝑦 = 𝑓 π‘₯
𝑑π‘₯
𝑑π‘₯
The solution of nonhomogeneous equations is given by
𝑦 π‘₯ = π‘¦β„Ž π‘₯ + 𝑦 𝑝 (π‘₯)

π‘¦β„Ž (π‘₯)=Solution of homogenous equation
𝑦 𝑝 (π‘₯)= Solution of the particular equation
There are two methods of finding the particular solution,
𝑦 𝑝 (π‘₯)
a) The method of undetermined coefficients
b) The method of variational of parameters

12

Method of Undetermined
Coefficient
...
2 in page 33)

ο‚΄Step 3: Find 𝑦 ′𝑝 and 𝑦 β€²β€²
...

ο‚΄Step 4: Find the sum of π‘¦β„Ž and 𝑦 𝑝
...


13
Form of 𝒇(𝒙)

𝛼 𝑛 π‘₯ 𝑛 + 𝛼 π‘›βˆ’1 π‘₯ π‘›βˆ’1 + β‹―
+ π‘Ž1 π‘₯ + 𝛼0
𝛼 𝑛 π‘₯ 𝑛 + 𝛼 π‘›βˆ’1 π‘₯ π‘›βˆ’1 + β‹―
+ π‘Ž1 π‘₯ + 𝛼0

Roots

π’š 𝒑 (𝒙)

π‘š1 β‰  0 and π‘š2 β‰  0
π‘š1 = 0 or π‘š2 = 0
(either one)

π‘Ž 𝑛 π‘₯ 𝑛 + π‘Ž π‘›βˆ’1 π‘₯ π‘›βˆ’1
+ β‹―
...


𝑑2 𝑦
= 6π‘₯ 2
𝑑π‘₯ 2
𝑦 β€²β€² βˆ’ 𝑦 β€² βˆ’

3
...


𝑦 β€²β€² + 2𝑦 β€² + 2𝑦 = sin π‘₯

5
...


𝑦 β€²β€² βˆ’ 2𝑦 β€² + 2𝑦 = 2π‘₯ 2 βˆ’ 1;

1
...

ο‚΄ Step 2: Calculate the Wronskian value,
𝑦1 𝑦2
β€²
β€²
𝑀 = 𝑦 β€² 𝑦 β€² = 𝑦1 𝑦2 βˆ’ 𝑦2 𝑦1
1
2
ο‚΄ Step 3: Calculate 𝑒 and 𝑣:

𝑒=βˆ’

𝑦2 𝑓(π‘₯)
π‘Žπ‘Š

𝑑π‘₯ and v =

𝑦1 𝑓(π‘₯)
π‘Žπ‘Š

ο‚΄ Step 4: Get the general solution for 𝑦(π‘₯)
𝑦 π‘₯ = 𝑒𝑦1 + 𝑣𝑦2

𝑑π‘₯

23

Example:

Find the General solution for

𝑦 β€²β€²

βˆ’ 2𝑦 β€²

+ 𝑦=

Solution:
Homogeneous solution:
𝑦 β€²β€² βˆ’ 2𝑦 β€² + 𝑦 = 0
Characteristic eqn: π‘š2 βˆ’ 2π‘š + 1 = 0
π‘šβˆ’1 π‘šβˆ’1 =0
π‘š=1
π‘¦β„Ž π‘₯ = 𝐴𝑒 π‘₯ + 𝐡π‘₯𝑒 π‘₯
β‡’ 𝑦1 = 𝑒 π‘₯ ; 𝑦2 = π‘₯𝑒 π‘₯
Wronskian value:
𝑦1 𝑦2
𝑒π‘₯
π‘₯𝑒 π‘₯
𝑀 = 𝑦′ 𝑦′ = π‘₯
𝑒
𝑒 π‘₯ + π‘₯𝑒 π‘₯
1
2
𝑀 = 𝑒 𝑒 π‘₯ + π‘₯𝑒 π‘₯ βˆ’ π‘₯𝑒 π‘₯ βˆ™ 𝑒 π‘₯
𝑀 = 𝑒 2π‘₯

𝑒π‘₯
1+π‘₯ 2

Example:
24
𝑀 = 𝑒 2π‘₯

𝑣=

Next, find 𝑒 and 𝑣:

𝑒=βˆ’

𝑦2 𝑓 π‘₯
𝑑π‘₯
π‘Žπ‘Š

𝑒π‘₯
𝑒
1 + π‘₯2
𝑑π‘₯
1 𝑒 2π‘₯
π‘₯

𝑣=

𝑒π‘₯
π‘₯𝑒
1 + π‘₯2
𝑑π‘₯
1 𝑒 2π‘₯
π‘₯

𝑒=βˆ’
𝑒=βˆ’

𝑣=

π‘₯
𝑑π‘₯
1 + π‘₯2

Using substitution method ,
π‘₯ 2
...


𝑦 β€²β€² βˆ’ 4𝑦 β€² + 3𝑦 = 𝑒 π‘₯

2
...


𝑦 β€²β€² + 2𝑦 β€² + 5𝑦 = 𝑒 βˆ’π‘₯ sin 2π‘₯

4
...


𝑦 β€²β€² βˆ’ 2𝑦 β€² + 2𝑦 = 𝑒 π‘₯ 1 + sin π‘₯ ;

1

𝑦 0 = 0 and 𝑦

πœ‹
2

=0

34

Applications of second order
linear differential equation

ο‚΄ Variety of applications in engineering fields such as:

ο‚΄ Electrical Circuits
ο‚΄ Spring/Mass Systems
ο‚΄ In electrical circuits, RLC circuits ( contains Resistor, inductor, capacitor),
voltage across that resistor, inductor and capacitor are given by
𝑖𝑅,

𝐿

𝑑𝑖
𝑑𝑑

and

1
𝐢

π‘ž

respectively
...
The initial charge and current are
both zero
...


36

π‘ž β€²β€² + 40π‘ž β€² + 625π‘ž = 100 cos 10𝑑

Use undetermined coefficient method to solve [1]
Step 1: find π‘¦β„Ž

π‘ž β€²β€² + 40π‘žβ€² + 625π‘ž = 0
↓
π‘š2 + 40π‘š + 625 = 0
βˆ’40 Β± 402 βˆ’ 4(625)
π‘š=
2
βˆ’40 Β± 30𝑖
π‘š=
2
π‘š = βˆ’20 Β± 15𝑖
β‡’ π‘žβ„Ž = 𝑒 βˆ’20𝑑 π΄βˆ— cos 15𝑑 βˆ’ π΅βˆ— sin 15𝑑

ο‚΄ Step 2: find the π‘ž 𝑝
𝐸 𝑑 = 100 cos 10𝑑 β‡’ π‘ž 𝑝 𝑑 = 𝐴 cos 10𝑑 + 𝐡 sin 10𝑑
37
π‘ž ′𝑝 = βˆ’10𝐴 sin 10𝑑 + 10𝐡 cos 10𝑑
π‘ž β€²β€² = βˆ’100𝐴 cos 10𝑑 βˆ’ 100𝐡 sin 10𝑑
𝑝
Substitute π‘ž 𝑝 and its derivatives in
π‘ž β€²β€² + 40π‘ž β€² + 625π‘ž = 100 cos 10𝑑

Gets
βˆ’100𝐴 cos 10𝑑 βˆ’ 100𝐡 sin 10𝑑 + 40 βˆ’10𝐴 sin 10𝑑 + 10𝐡 cos 10𝑑
+ 625 𝐴 cos 10𝑑 + 𝐡 sin 10𝑑 = 100 cos 10𝑑
βˆ’100𝐴 + 400𝐡 + 625𝐴 cos 10𝑑
+ βˆ’100𝐡 βˆ’ 400𝐴 + 625𝐡 sin 10𝑑 = 100 cos 10𝑑
β‡’ βˆ’525𝐴 + 400𝐡 = 100
β‡’ βˆ’400𝐴 + 525𝐡 = 0
84
64
,B =

...

697
697

This yields 𝐴 =
Hence,π‘ž 𝑝 𝑑

38
The general solution of the problem is
π‘ž = π‘žβ„Ž + π‘ž 𝑝

84
64
π‘ž= 𝑒
𝐴 cos 15𝑑 βˆ’ 𝐡 sin 15𝑑 +
cos 10𝑑 +
sin 10𝑑
697
697
From question, the initial charge and current are both zero
means, the initial conditions is
𝑑 = 0, π‘ž = 0; π‘žβ€² = 0
84
464
βˆ— =βˆ’
βˆ— =βˆ’
β‡’ 𝐴
; 𝐡
697
2091
βˆ’20𝑑

π‘ž= 𝑒

βˆ’20𝑑

βˆ—

βˆ—

84
464
84
64
βˆ’
cos 15𝑑 βˆ’
sin 15𝑑 +
cos 10𝑑 +
sin 10𝑑
697
2091
697
697

39

THE END


Title: Second Order Linear Differential Equations
Description: Explanation of solving homogeneous and non homogeneous second order linear differential equations using both method of undetermined coefficient. and method of variation of parameters