Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Probability and Statistics sheet
Description: This item contains 4 pages of basic definitions about probability and statistics (undergraduate level). It includes tens of formulas and almost all Random Variable Models (discrete and continuous)
Description: This item contains 4 pages of basic definitions about probability and statistics (undergraduate level). It includes tens of formulas and almost all Random Variable Models (discrete and continuous)
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
π
ππ΄
π!
= (πβπ)!
π
ππΆ
π!
= (πβπ)! π!
-ExperiΓͺncia AleatΓ³ria: Procedimento que permite a obtenΓ§Γ£o de
observaΓ§Γ΅es cujo resultado Γ© incerto e nΓ£o pode ser conhecido
antes de realizada a experiΓͺncia
...
-Acontecimento: Subconjunto do espaΓ§o amostral
...
π β 0
2
...
{An} Suc de acont β β+β
π=1 π΄π β π
AxiomΓ‘tica de Komogarov :
(Ξ©, π, π«) espaΓ§o de probabilidades se:
1
...
βπ΄βπ π«(π΄) β₯ 0
3
...
de acont
...
πβΆ+β
βΆ Propriedade : ( P(A\B)=P(A)-P(Aβ©B) )
Bonferroni:
An decrescente: lim π΄π = β+β
π=1 π΄π
...
πβΆ+β
πβΆ+β
Indep
...
,π T
...
Bayes:
π(π΄π)
...
π(π΅|π΄π)
π(π΄π|π΅) = β π(π΄π)
...
DistribuiΓ§Γ£o:
1
...
3
...
5
...
mΓ©dio: π¬(πΏ) = βπ ππ π(ππ ) Momento de ordem k em relaΓ§Γ£o a a: π = πΈ((π β π)π ) Desvio-PadrΓ£o: Ο=βπππ(π)
π
Var: π 2 = πΈ(π 2 ) β (πΈ(π))2 C
...
MΓ©dio:
π₯π
F
...
de Probabilidade: β(π§) = πΈ(π§ π ) = β+β
π=0 ππ
...
G
...
π(π₯π )
ο· πΈ(π + π) = πΈ(π) + πΈ(π)
Prop:
ο· ππ ππππ
...
ππ (π )
ο· πΈ(π) = π
(π)
ο· ππ (0) = πΈ(π π )
ο· πΈ[ππ(π)] = ππΈ[π(π)]
ο· β(0) = π0 ; β(1) = 1
ο· πΈ[π1 (π) + π2 (π)] = πΈ[π1 (π)] + πΈ[π2 (π)]
(π)
β (0)
(π)
ο· β (0) = ππ π₯π ! βΊ ππ =
Prop Var:
π!
(π)
ο· πππ(π) = 0
ο· β (1) = πΈ[π(π β 1)
...
A
...
(1 β π)πβπ₯
...
πΌπππ βΆ ππ ~π΅ππ(ππ , π) βΉ
βππ=1 ππ ~π΅ππ(βππ=1 ππ , π)
Modelo Binomial Negativo: VersΓ£o 1: π~π΅π(π, π)
π β ππ’ππππ ππ ππππ£ππ ππ‘Γ© πππ‘ππ π π π’πππ π ππ
π₯;
π₯ = π, π + 1, β¦
π = { π₯β1 π
(πβ1)
...
π + 1 β π)π
πππ(π) = π
...
π π + 1 β π)π
VersΓ£o 2:
π β ππ’ππππ ππ πππ π’πππ π ππ ππ‘Γ© πππ‘ππ πΎ π π’πππ π ππ
π¦;
π¦ β β0
π = { π¦βπβ1 π
π¦
( πβ1 )
...
πΌπππ βΆ ππ ~π΅π(ππ , π) βΉ βππ=1 ππ ~π΅π(βππ=1 ππ , π)
Modelo GeomΓ©trico: π~πΊ(π) (π~πΊ(π) βΉ π~π΅π(1, π))
1
ο· πΈ(π) = π
π β ππ’ππππ ππ ππππ£ππ ππ‘π 1ΒΊ π π’πππ π π
π₯; π₯ββ
π={
π(1 β π)π₯β1
ο·
β1βπ
πππ(π) =
π
ππ π
ο· π(π ) =
Teorema: π~πΊ(π) βΉ π(π > π + π|π > π) = π(π β₯ π)
1β(1βπ)π π
Teorema: π π
...
( πβπ₯ )
= π(π = π₯)
π
π(1βπ)
(ππ)
...
(1 β π)
πβπ₯
, βπ₯ β {1, β¦ , π}
ο·
ο·
πΈ(π) = ππ
πβπ
πππ(π) = ππ(1 β π) Γ πβ1
π βπ
...
π ππ₯ (π₯) = π₯!
Teorema: π1 , π2 , β¦ , ππ π
...
π~π(π1 ), π~π(π2 ) , π β β, π πππ₯π βΉ π|π + π = π~π΅ππ(π, π
π!
π1
1 +π2
)
Teorema: π~π(ππ ) π π|π = π~π΅ππ(π, π) βΉ π~π(ππ1 )
Vetores Aleatorios: (π, X): ΟϡΩ βΆ (X(Ο), Y(Ο)) β β2 F
...
DistribuiΓ§Γ£o Marginal:
Prop F
...
C:
πΉπ (π₯) = πΉπ,π (π₯, +β) ; πΉπ (π¦) = πΉπ,π (+β, π¦)
1
...
πΉπ (π¦)
2
...
Massa Prob Conjunta:
3
...
πΌ = {(π₯, π¦): π₯1 < π β€ π₯2 ; π¦1 < π β€ π¦2 }, π(πΌ ) =
(π₯π , π¦π )
= πΉπ,π (π₯2 , π¦2 ) β πΉπ,π (π₯1 , π¦2 ) β πΉπ,π (π₯2 , π¦1 ) + πΉπ,π (π₯1 , π¦1 )
ππ,π (π₯, π¦) = {
π(π = π₯π , π = π¦π )
5
...
Massa Prob Marginal:
ππ (π₯) = βππ=1 ππ,π (π₯, π¦π ) ; ππ (π¦) = βππ=1 ππ,π (π₯π , π¦) Teorema: π, π π
...
Prob Condicionada: ππ|π=π¦π (π¦) = π(π = π₯|π = π¦π ) = π,π π ; ππ|π=π₯π (π₯) = π(π = π¦|π = π₯π ) = π,π π
ππ (π¦π )
ππ (π₯π )
Valor MΓ©dio: πΈ[π(π, π)] = βπ βπ π(π₯π , π¦π )
...
k+s em rl
...
πΌπππ βΉ πΆππ£(π, π) = 0
πΆππ£(π,π)
Coeficiente de CorrelaΓ§Γ£o: ππ,π = πΈ(π)
...
Var Cnd: πππ(π|π = π₯π ) = βπ[π¦π β πΈπ (π₯π )]2 ππ|π=π₯π (π¦π |π₯π )
π₯
Variaveis aleatΓ³rias Continuas: FunΓ§Γ£o Densidade Prob: ππ (π₯) π‘ππ ππ’π πΉπ (π₯) = π(π β€ π₯) = β«ββ ππ (π‘)ππ‘
+β
+β
Valor MΓ©dio: πΈ(π) = β«ββ π₯ππ (π₯) ππ₯ , (πΈ[π(π)] = β«ββ π(π)ππ (π₯) ππ₯)
Teorema: π β π
...
F
...
πΆ ,0 < πΌ < 1, ππ’πππ‘ππ ππ πππππ β π£ππππ ππΌ π‘ππ ππ’π:
ππΌ
β«ββ π(π₯) ππ₯ = πΉ(ππΌ ) = πΌ Mediana: ππ’πππ‘ππ ππ πππππ 0
...
5 Moda: πβ , π£ππππ ππ π: π(π₯) β€ π(πβ ), βπ₯
+β
F
...
de Momentos: π(π ) = πΈ(π π π ) = β«ββ π π π₯ ππ (π₯) ππ₯ Modelo Uniforme Continuo: π~π(π, π), π < π
Teorema: π π
...
πΌ[π,π]
={
Modelo de Gauss(Normal): π~πΊππ’(π, π) βΉ (π = π )~πΊππ’(0,1)
0
, πΆ
...
π ππ ~πΊππ’(ππ , ππ ) βΉ
0
,π₯ < π
(π₯βπ)2
β
π
π
π
2 2
π₯βπ
π₯
β
β
π 2π2
βΉβ
πΌ
π
~πΊππ’(
πΌ
π
πΌ
π
)
π=1 π π
π=1 π π, π=1 π π
ο· πΉπ (π₯) = β«ββ ππ (π₯) ππ₯ = {πβπ , π β€ π₯ < π
ο· ππ (π₯) = 2
π β2π
Modelo Exp: π~πΈπ₯π(πΌ) β π~πΊπ(1, πΌ)
1
,π₯ β₯ π
ο·
ο·
ο·
ο·
ππ (π§) = π(π§)
πΉπ (π§) = π(π§)
πΈ(π) = π
πππ(π) = π 2
ο·
ππ (π ) = π ππ +
ο·
ο·
ο·
ο·
π2 π 2
2
π 2
ππ (π ) = π 2
πΈ(π 2π β1 ) = 0
ο·
ο·
ο·
ππ (π₯) = πΌπ βπΌπ₯
0 ,
π₯<0
πΉπ (π₯) = { βπΌπ₯
βπ
+ 1, π₯ β₯ 0
1
πΈ(π) =
πΌ
πππ(π) =
π(π ) =
ο·
ο·
ο·
ο·
Ξ(π)ΓΞ(π)
Ξ(π+π)
π₯ πβ1 (1βπ₯)πβ1
πΌ[0,1]
Ξ(π,π)
π
πΈ(π) = π+π
πΓπ
πππ(π) = (π+π)2 (π+π+1)
π(π+1)(π+2)Γβ¦Γ(π+πβ1)
πΈ(π π ) = (π+π)Γβ¦Γ(π+π+πβ1)
ππ (π₯) =
+β
πππ(π)
ο·
π(π ) =
1
1
Modelo Beta: π~π΅π(π, π)
ο·
ο·
π+π
2
(πβπ)2
= 12
π π π βπ π π
,
{ π (πβπ)
π β 0
, π =0
Teorema: π~πΈπ₯π(πΌ), π(π > π₯ + π¦|π > π₯) = π(π > π)
π 1
Modelo Gama: π~πΊπ(π, πΌ)
D
...
π₯ πβ1 ππ₯
ο·
1
πΌ2
ο·
πΌ π π βπΌπ₯ π₯ πβ1
ο·
ππ (π₯) =
ο·
πΈ(π) =
ο·
πππ(π) = πΌ2
ο·
πΈ(π π ) =
ο·
π(π ) = (1 β πΌ)
π
πΌ
Ξ(π)
π
ο· πΈ(π) = π
ο· πππ(π) = 2π
Teorema: π π
...
Dnsd P
...
Dnsd P
...
a a: β«ββ β«ββ (π₯ β π)π (π₯ β π)π ππ,π (π₯, π¦) ππ₯ ππ¦
MATHTOPICS | Hermano Valido
π₯
+β
π¦
+β
F
...
ππ ππ
π¦βππ 2
)+(
ππ
) ]
πΈ(π) = ππ
πΈ(π) = ππ
π(π) = ππ2
π(π) = ππ2
πΆππ£(π, π) =
= ππ ππ π
ππ,π (π 1 , π 2 ) = π 2(π 1 +2ππ 1 π 2 +π 2 )
1
2
1
ππ,π (π 1 , π 2 ) = exp(ππ π 1 + ππ π 2 + 2 (ππ2 π 12 + ο· π (π₯) = 1
...
ππππππ π΅πππππππ πππππ β π π π π ππ πΌππππππππππ‘ππ β π = 0
Simetria de Variaveis
...
π(|π₯| > π) = 0
πβΆ+β
2
RegressΓ΅es: π πππππ’ππ‘π πππ ππππ‘ππ ππ β : (π₯, πΈ(π|π = π₯) ππππππ π ππ’ππ£π ππ ππππππ π Γ£π(ππππ πΌ)ππ π π ππππ π
EstatistΓcas Ordinais: (π1 , π2 , β¦ , ππ ) ππππππ£πππ π΄ππππ‘Γ³ππππ β ππππ ππ : π = π(π) π π
...
π!
ConvergΓͺncias EstocΓ‘sticas: {ππ , π β β} π π’π ππ π
...
ππ β© π΅ππ(π) β ππ {
ππ =
π1 +π2 +β―+ππ π
β
π
0
1βπ
1
πππ‘Γ£π
π
π
π
π +π +β―+ππ
Lei dos Grandes NΓΊmeros: {ππ , π β β} π π’π ππ π
...
π΄β² π , {πππ (π ), π β β} ππππππ πππππππ‘π π π’π ππ ππ’πΓ§Γ΅ππ πππππππππ ππ
π
ππππππ‘ππ π ππππ πππππ π Γ‘πππ π π π’π
...
πΉπ (π₯) Γ© lim πππ (π ) = ππ (π )
πβΆ+β
Teorema do limite central: {ππ , π β β} π π’π ππ π
...
βπ
β© π(0,1)
MATHTOPICS | Hermano Valido
Title: Probability and Statistics sheet
Description: This item contains 4 pages of basic definitions about probability and statistics (undergraduate level). It includes tens of formulas and almost all Random Variable Models (discrete and continuous)
Description: This item contains 4 pages of basic definitions about probability and statistics (undergraduate level). It includes tens of formulas and almost all Random Variable Models (discrete and continuous)