Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Probability and Statistics sheet
Description: This item contains 4 pages of basic definitions about probability and statistics (undergraduate level). It includes tens of formulas and almost all Random Variable Models (discrete and continuous)

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


π‘š
𝑛𝐴

π‘š!

= (π‘šβˆ’π‘›)!

π‘š
𝑛𝐢

π‘š!

= (π‘šβˆ’π‘›)! 𝑛!

-ExperiΓͺncia AleatΓ³ria: Procedimento que permite a obtenΓ§Γ£o de
observaΓ§Γ΅es cujo resultado Γ© incerto e nΓ£o pode ser conhecido
antes de realizada a experiΓͺncia
...

-Acontecimento: Subconjunto do espaΓ§o amostral
...
π’œ β‰  0
2
...
{An} Suc de acont β‡’ ⋃+∞
𝑛=1 𝐴𝑛 ∈ π’œ
AxiomΓ‘tica de Komogarov :
(Ξ©, π’œ, 𝒫) espaΓ§o de probabilidades se:
1
...
βˆ€π΄βˆˆπ’œ 𝒫(𝐴) β‰₯ 0
3
...
de acont
...

π‘›βŸΆ+∞

⟢ Propriedade : ( P(A\B)=P(A)-P(A∩B) )
Bonferroni:

An decrescente: lim 𝐴𝑛 = β‹‚+∞
𝑛=1 𝐴𝑛
...

π‘›βŸΆ+∞

π‘›βŸΆ+∞

Indep
...
,𝑛 T
...
Bayes:

𝑃(𝐴𝑖)
...
𝑃(𝐡|𝐴𝑛)

𝑃(𝐴𝑖|𝐡) = βˆ‘ 𝑃(𝐴𝑛)
...
DistribuiΓ§Γ£o:
1
...

3
...

5
...
mΓ©dio: 𝑬(𝑿) = βˆ‘π’Š π’™π’Š 𝒇(π’™π’Š ) Momento de ordem k em relaΓ§Γ£o a a: 𝑀 = 𝐸((𝑋 βˆ’ π‘Ž)π‘˜ ) Desvio-PadrΓ£o: Οƒ=βˆšπ‘‰π‘Žπ‘Ÿ(𝑋)
𝜎
Var: 𝜎 2 = 𝐸(𝑋 2 ) βˆ’ (𝐸(𝑋))2 C
...
MΓ©dio:
π‘₯𝑛
F
...
de Probabilidade: ∏(𝑧) = 𝐸(𝑧 𝑋 ) = βˆ‘+∞
𝑛=0 𝑝𝑛
...
G
...
𝑓(π‘₯𝑖 )
ο‚· 𝐸(𝑋 + π‘Œ) = 𝐸(𝑋) + 𝐸(π‘Œ)
Prop:
ο‚· π‘‹π‘Œ 𝑖𝑛𝑑𝑝
...
π‘€π‘Œ (𝑠)
ο‚· 𝐸(𝑐) = 𝑐
(π‘˜)
ο‚· 𝑀𝑋 (0) = 𝐸(𝑋 π‘˜ )
ο‚· 𝐸[π‘πœ“(𝑋)] = 𝑐𝐸[πœ“(𝑋)]
ο‚· ∏(0) = 𝑝0 ; ∏(1) = 1
ο‚· 𝐸[πœ“1 (𝑋) + πœ“2 (𝑋)] = 𝐸[πœ“1 (𝑋)] + 𝐸[πœ“2 (𝑋)]
(𝑛)
∏ (0)
(𝑛)
ο‚· ∏ (0) = 𝑝𝑛 π‘₯𝑛 ! ⟺ 𝑝𝑛 =
Prop Var:
𝑛!
(𝑛)
ο‚· π‘‰π‘Žπ‘Ÿ(𝑐) = 0
ο‚· ∏ (1) = 𝐸[𝑋(𝑋 βˆ’ 1)
...
A
...
(1 βˆ’ 𝑝)π‘›βˆ’π‘₯
...
𝐼𝑛𝑑𝑝 ∢ 𝑋𝑖 ~𝐡𝑖𝑛(𝑛𝑖 , 𝑝) ⟹
βˆ‘π‘›π‘–=1 𝑋𝑖 ~𝐡𝑖𝑛(βˆ‘π‘›π‘–=1 𝑛𝑖 , 𝑝)
Modelo Binomial Negativo: VersΓ£o 1: 𝑋~𝐡𝑁(π‘˜, 𝑝)
𝑋 βˆ’ π‘π‘’π‘šπ‘’π‘Ÿπ‘œ 𝑑𝑒 π‘π‘Ÿπ‘œπ‘£π‘Žπ‘  π‘Žπ‘‘Γ© π‘œπ‘π‘‘π‘’π‘Ÿ π‘˜ π‘ π‘’π‘π‘’π‘ π‘ π‘œπ‘ 
π‘₯;
π‘₯ = π‘˜, π‘˜ + 1, …
𝑋 = { π‘₯βˆ’1 π‘˜
(π‘˜βˆ’1)
...
𝑝 + 1 βˆ’ 𝑝)𝑛
π‘‰π‘Žπ‘Ÿ(𝑋) = 𝑛
...
𝑒 𝑠 + 1 βˆ’ 𝑝)𝑛

VersΓ£o 2:
π‘Œ βˆ’ π‘π‘’π‘šπ‘’π‘Ÿπ‘œ 𝑑𝑒 π‘–π‘›π‘ π‘’π‘π‘’π‘ π‘ π‘œπ‘  π‘Žπ‘‘Γ© π‘œπ‘π‘‘π‘’π‘Ÿ 𝐾 π‘ π‘’π‘π‘’π‘ π‘ π‘œπ‘ 
𝑦;
𝑦 ∈ β„•0
π‘Œ = { π‘¦βˆ’π‘˜βˆ’1 π‘˜
𝑦
( π‘˜βˆ’1 )
...
𝐼𝑛𝑑𝑝 ∢ 𝑋𝑖 ~𝐡𝑁(𝑛𝑖 , 𝑝) ⟹ βˆ‘π‘›π‘–=1 𝑋𝑖 ~𝐡𝑁(βˆ‘π‘›π‘–=1 𝑛𝑖 , 𝑝)
Modelo GeomΓ©trico: 𝑋~𝐺(𝑝) (𝑋~𝐺(𝑝) ⟹ 𝑋~𝐡𝑁(1, 𝑝))
1
ο‚· 𝐸(𝑋) = 𝑝
𝑋 βˆ’ π‘π‘’π‘šπ‘’π‘Ÿπ‘œ 𝑑𝑒 π‘π‘Ÿπ‘œπ‘£π‘Žπ‘  π‘Žπ‘‘π‘’ 1ΒΊ π‘ π‘’π‘π‘’π‘ π‘ π‘œ

π‘₯; π‘₯βˆˆβ„•
𝑋={
𝑝(1 βˆ’ 𝑝)π‘₯βˆ’1

ο‚·

√1βˆ’π‘

π‘‰π‘Žπ‘Ÿ(𝑋) =

𝑝
𝑝𝑒 𝑠

ο‚· 𝑀(𝑠) =
Teorema: 𝑋~𝐺(𝑝) ⟹ 𝑃(𝑋 > π‘š + 𝑛|𝑋 > π‘š) = 𝑃(𝑋 β‰₯ 𝑛)
1βˆ’(1βˆ’π‘)𝑒 𝑠
Teorema: 𝑋 𝑉
...
( π‘βˆ’π‘₯ )
= 𝑃(𝑋 = π‘₯)
𝑀
𝑀(1βˆ’π‘)

(𝑀𝑝)
...
(1 βˆ’ 𝑝)

π‘βˆ’π‘₯

, βˆ€π‘₯ ∈ {1, … , 𝑁}

ο‚·
ο‚·

𝐸(𝑋) = 𝑁𝑝
π‘€βˆ’π‘
π‘‰π‘Žπ‘Ÿ(𝑋) = 𝑁𝑝(1 βˆ’ 𝑝) Γ— π‘€βˆ’1

𝑒 βˆ’πœ†
...
𝑝 𝑓π‘₯ (π‘₯) = π‘₯!
Teorema: 𝑋1 , 𝑋2 , … , 𝑋𝑛 𝑉
...
𝑋~𝑃(πœ†1 ), π‘Œ~𝑃(πœ†2 ) , 𝑛 ∈ β„•, 𝑛 𝑓𝑖π‘₯π‘œ ⟹ 𝑋|𝑋 + π‘Œ = 𝑛~𝐡𝑖𝑛(𝑛, πœ†

π‘˜!
πœ†1

1 +πœ†2

)

Teorema: 𝑋~𝑃(πœ†π‘– ) 𝑒 π‘Œ|𝑋 = 𝑛~𝐡𝑖𝑛(𝑛, 𝑝) ⟹ π‘Œ~𝑃(π‘πœ†1 )
Vetores Aleatorios: (π‘Œ, X): ωϡΩ ⟢ (X(Ο‰), Y(Ο‰)) ∈ ℝ2 F
...
DistribuiΓ§Γ£o Marginal:
Prop F
...
C:
𝐹𝑋 (π‘₯) = 𝐹𝑋,π‘Œ (π‘₯, +∞) ; πΉπ‘Œ (𝑦) = 𝐹𝑋,π‘Œ (+∞, 𝑦)
1
...
πΉπ‘Œ (𝑦)
2
...
Massa Prob Conjunta:
3
...
𝐼 = {(π‘₯, 𝑦): π‘₯1 < 𝑋 ≀ π‘₯2 ; 𝑦1 < π‘Œ ≀ 𝑦2 }, 𝑃(𝐼 ) =
(π‘₯𝑛 , 𝑦𝑛 )
= 𝐹𝑋,π‘Œ (π‘₯2 , 𝑦2 ) βˆ’ 𝐹𝑋,π‘Œ (π‘₯1 , 𝑦2 ) βˆ’ 𝐹𝑋,π‘Œ (π‘₯2 , 𝑦1 ) + 𝐹𝑋,π‘Œ (π‘₯1 , 𝑦1 )
𝑓𝑋,π‘Œ (π‘₯, 𝑦) = {
𝑃(𝑋 = π‘₯𝑛 , π‘Œ = 𝑦𝑛 )
5
...
Massa Prob Marginal:
𝑓𝑋 (π‘₯) = βˆ‘π‘›π‘–=1 𝑓𝑋,π‘Œ (π‘₯, 𝑦𝑖 ) ; π‘“π‘Œ (𝑦) = βˆ‘π‘›π‘–=1 𝑓𝑋,π‘Œ (π‘₯𝑖 , 𝑦) Teorema: 𝑋, π‘Œ 𝑉
...
Prob Condicionada: 𝑓𝑋|π‘Œ=𝑦𝑖 (𝑦) = 𝑃(𝑋 = π‘₯|π‘Œ = 𝑦𝑖 ) = 𝑋,π‘Œ 𝑖 ; π‘“π‘Œ|𝑋=π‘₯𝑖 (π‘₯) = 𝑃(π‘Œ = 𝑦|𝑋 = π‘₯𝑖 ) = 𝑋,π‘Œ 𝑖
π‘“π‘Œ (𝑦𝑖 )

𝑓𝑋 (π‘₯𝑖 )

Valor MΓ©dio: 𝐸[πœ“(𝑋, π‘Œ)] = βˆ‘π‘– βˆ‘π‘— πœ“(π‘₯𝑖 , 𝑦𝑗 )
...
k+s em rl
...
𝐼𝑛𝑑𝑝 ⟹ πΆπ‘œπ‘£(𝑋, π‘Œ) = 0
πΆπ‘œπ‘£(𝑋,π‘Œ)
Coeficiente de CorrelaΓ§Γ£o: πœŒπ‘‹,π‘Œ = 𝐸(𝑋)
...

Var Cnd: π‘‰π‘Žπ‘Ÿ(π‘Œ|𝑋 = π‘₯𝑖 ) = βˆ‘π‘—[𝑦𝑗 βˆ’ πΈπ‘Œ (π‘₯𝑖 )]2 π‘“π‘Œ|𝑋=π‘₯𝑖 (𝑦𝑗 |π‘₯𝑖 )
π‘₯
Variaveis aleatΓ³rias Continuas: FunΓ§Γ£o Densidade Prob: 𝑓𝑋 (π‘₯) π‘‘π‘Žπ‘™ π‘žπ‘’π‘’ 𝐹𝑋 (π‘₯) = 𝑃(𝑋 ≀ π‘₯) = βˆ«βˆ’βˆž 𝑓𝑋 (𝑑)𝑑𝑑
+∞

+∞

Valor MΓ©dio: 𝐸(𝑋) = βˆ«βˆ’βˆž π‘₯𝑓𝑋 (π‘₯) 𝑑π‘₯ , (𝐸[πœ“(𝑋)] = βˆ«βˆ’βˆž πœ“(𝑋)𝑓𝑋 (π‘₯) 𝑑π‘₯)
Teorema: 𝑋 βˆ’ 𝑉
...
F
...
𝐢 ,0 < 𝛼 < 1, π‘„π‘’π‘Žπ‘›π‘‘π‘–π‘™ 𝑑𝑒 π‘œπ‘Ÿπ‘‘π‘’π‘š ∝ π‘£π‘Žπ‘™π‘œπ‘Ÿ πœ‰π›Ό π‘‘π‘Žπ‘™ π‘žπ‘’π‘’:
πœ‰π›Ό
βˆ«βˆ’βˆž 𝑓(π‘₯) 𝑑π‘₯ = 𝐹(πœ‰π›Ό ) = 𝛼 Mediana: π‘„π‘’π‘Žπ‘›π‘‘π‘–π‘™ 𝑑𝑒 π‘œπ‘Ÿπ‘‘π‘’π‘š 0
...
5 Moda: πœ‡βˆ— , π‘£π‘Žπ‘™π‘œπ‘Ÿ 𝑑𝑒 𝑋: 𝑓(π‘₯) ≀ 𝑓(πœ‡βˆ— ), βˆ€π‘₯
+∞

F
...
de Momentos: 𝑀(𝑠) = 𝐸(𝑒 𝑠𝑋 ) = βˆ«βˆ’βˆž 𝑒 𝑠π‘₯ 𝑓𝑋 (π‘₯) 𝑑π‘₯ Modelo Uniforme Continuo: 𝑋~π‘ˆ(π‘Ž, 𝑏), π‘Ž < 𝑏
Teorema: 𝑋 𝑉
...
𝐼[π‘Ž,𝑏]
={
Modelo de Gauss(Normal): 𝑋~πΊπ‘Žπ‘’(πœ‡, 𝜎) ⟹ (𝑍 = 𝜎 )~πΊπ‘Žπ‘’(0,1)
0
, 𝐢
...
𝑒 𝑋𝑖 ~πΊπ‘Žπ‘’(πœ‡π‘– , πœŽπ‘– ) ⟹
0
,π‘₯ < π‘Ž
(π‘₯βˆ’πœ‡)2
βˆ’
𝑛
𝑛
𝑛
2 2
π‘₯βˆ’π‘Ž
π‘₯
βˆ‘
βˆ‘
𝑒 2𝜎2
βŸΉβˆ‘
𝛼
𝑋
~πΊπ‘Žπ‘’(
𝛼
πœ‡
𝛼
𝜎
)
𝑖=1 𝑖 𝑖
𝑖=1 𝑖 𝑖, 𝑖=1 𝑖 𝑖
ο‚· 𝐹𝑋 (π‘₯) = βˆ«βˆ’βˆž 𝑓𝑋 (π‘₯) 𝑑π‘₯ = {π‘βˆ’π‘Ž , π‘Ž ≀ π‘₯ < 𝑏
ο‚· 𝑓𝑋 (π‘₯) = 2
𝜎 √2πœ‹
Modelo Exp: 𝑋~𝐸π‘₯𝑝(𝛼) ⇔ 𝑋~πΊπ‘Ž(1, 𝛼)
1
,π‘₯ β‰₯ 𝑏
ο‚·
ο‚·
ο‚·
ο‚·

𝑓𝑍 (𝑧) = πœ™(𝑧)
𝐹𝑍 (𝑧) = πœ™(𝑧)
𝐸(𝑋) = πœ‡
π‘‰π‘Žπ‘Ÿ(𝑋) = 𝜎 2

ο‚·

𝑀𝑋 (𝑠) = 𝑒 πœ‡π‘ +

ο‚·
ο‚·

ο‚·
ο‚·
𝜎2 𝑠 2
2

𝑠2

𝑀𝑍 (𝑠) = 𝑒 2
𝐸(𝑍 2π‘…βˆ’1 ) = 0

ο‚·
ο‚·
ο‚·

𝑓𝑋 (π‘₯) = 𝛼𝑒 βˆ’π›Όπ‘₯
0 ,
π‘₯<0
𝐹𝑋 (π‘₯) = { βˆ’π›Όπ‘₯
βˆ’π‘’
+ 1, π‘₯ β‰₯ 0
1
𝐸(𝑋) =
𝛼

π‘‰π‘Žπ‘Ÿ(𝑋) =
𝑀(𝑠) =

ο‚·

ο‚·
ο‚·
ο‚·

Ξ“(𝑛)Γ—Ξ“(π‘š)
Ξ“(𝑛+π‘š)

π‘₯ π‘šβˆ’1 (1βˆ’π‘₯)π‘›βˆ’1
𝐼[0,1]
Ξ’(π‘š,𝑛)
π‘š
𝐸(𝑋) = π‘š+𝑛
π‘šΓ—π‘›
π‘‰π‘Žπ‘Ÿ(𝑋) = (π‘š+𝑛)2 (π‘š+𝑛+1)
π‘š(π‘š+1)(π‘š+2)×…×(π‘š+π‘˜βˆ’1)
𝐸(𝑋 π‘˜ ) = (π‘š+𝑛)×…×(π‘š+𝑛+π‘˜βˆ’1)

𝑓𝑋 (π‘₯) =

+∞

π‘‰π‘Žπ‘Ÿ(𝑋)

ο‚·

𝑀(𝑠) =

1

1

Modelo Beta: 𝑋~𝐡𝑒(π‘š, 𝑛)
ο‚·

ο‚·

π‘Ž+𝑏
2
(π‘βˆ’π‘Ž)2
= 12
𝑒 𝑠𝑏 βˆ’π‘’ π‘ π‘Ž
,
{ 𝑠(π‘βˆ’π‘Ž)

𝑠≠0

, 𝑠=0

Teorema: 𝑋~𝐸π‘₯𝑝(𝛼), 𝑃(𝑋 > π‘₯ + 𝑦|𝑋 > π‘₯) = 𝑃(𝑋 > π‘Œ)
𝑛 1
Modelo Gama: 𝑋~πΊπ‘Ž(𝑛, 𝛼)
D
...
π‘₯ π‘›βˆ’1 𝑑π‘₯
ο‚·

1
𝛼2

ο‚·

𝛼 𝑛 𝑒 βˆ’π›Όπ‘₯ π‘₯ π‘›βˆ’1

ο‚·

𝑓𝑋 (π‘₯) =

ο‚·

𝐸(𝑋) =

ο‚·

π‘‰π‘Žπ‘Ÿ(𝑋) = 𝛼2

ο‚·

𝐸(𝑋 π‘˜ ) =

ο‚·

𝑀(𝑠) = (1 βˆ’ 𝛼)

𝑛
𝛼

Ξ“(𝑛)
𝑛

ο‚· 𝐸(𝑋) = 𝑛
ο‚· π‘‰π‘Žπ‘Ÿ(𝑋) = 2𝑛
Teorema: 𝑋 𝑉
...
Dnsd P
...
Dnsd P
...
a a: βˆ«βˆ’βˆž βˆ«βˆ’βˆž (π‘₯ βˆ’ π‘Ž)π‘Ÿ (π‘₯ βˆ’ π‘Ž)𝑠 𝑓𝑋,π‘Œ (π‘₯, 𝑦) 𝑑π‘₯ 𝑑𝑦

MATHTOPICS | Hermano Valido

π‘₯

+∞

𝑦

+∞

F
...
πœ‡π‘Œ πœŽπ‘Œ

π‘¦βˆ’πœ‡π‘Œ 2

)+(

πœŽπ‘Œ

) ]

𝐸(𝑋) = πœ‡π‘‹
𝐸(π‘Œ) = πœ‡π‘Œ
𝑉(𝑋) = πœŽπ‘‹2
𝑉(π‘Œ) = πœŽπ‘Œ2
πΆπ‘œπ‘£(𝑋, π‘Œ) =
= πœŽπ‘‹ πœŽπ‘Œ 𝜌

π‘€π‘ˆ,𝑉 (𝑠1 , 𝑠2 ) = 𝑒 2(𝑠1 +2πœŒπ‘ 1 𝑠2 +𝑠2 )
1
2
1
𝑀𝑋,π‘Œ (𝑠1 , 𝑠2 ) = exp(πœ‡π‘‹ 𝑠1 + πœ‡π‘Œ 𝑠2 + 2 (πœŽπ‘‹2 𝑠12 + ο‚· 𝑓 (π‘₯) = 1
...
π‘π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π΅π‘–π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘Žπ‘™ β‡’ 𝑋 𝑒 π‘Œ π‘ π‘Žπ‘œ 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑑𝑒𝑠 ⇔ 𝜌 = 0
Simetria de Variaveis
...
𝑃(|π‘₯| > 𝑛) = 0
π‘›βŸΆ+∞

2

RegressΓ΅es: 𝑂 π‘π‘œπ‘›π‘—π‘’π‘›π‘‘π‘œ π‘‘π‘œπ‘  π‘π‘œπ‘›π‘‘π‘œπ‘  𝑑𝑒 ℝ : (π‘₯, 𝐸(π‘Œ|𝑋 = π‘₯) 𝑑𝑒𝑓𝑖𝑛𝑒 π‘Ž π‘π‘’π‘Ÿπ‘£π‘Ž 𝑑𝑒 π‘Ÿπ‘’π‘”π‘Ÿπ‘’π‘ π‘ Γ£π‘œ(π‘‡π‘–π‘π‘œ 𝐼)𝑑𝑒 π‘Œ π‘ π‘œπ‘π‘Ÿπ‘’ 𝑉

EstatistΓ­cas Ordinais: (𝑋1 , 𝑋2 , … , 𝑋𝑛 ) π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘£π‘’π‘–π‘  π΄π‘™π‘’π‘Žπ‘‘Γ³π‘Ÿπ‘–π‘Žπ‘  – π‘†π‘’π‘—π‘Ž π‘‹π‘˜ : 𝑛 = 𝑋(π‘˜) π‘Ž π‘˜
...
𝑛!

ConvergΓͺncias EstocΓ‘sticas: {𝑋𝑛 , 𝑛 ∈ β„•} 𝑠𝑒𝑐 𝑑𝑒 𝑉
...
𝑋𝑛 ∩ π΅π‘’π‘Ÿ(𝑝) ⇔ 𝑋𝑛 {
𝑓𝑛 =

𝑋1 +𝑋2 +β‹―+𝑋𝑛 𝑃
β†’
𝑛

0
1βˆ’π‘

1
π‘’π‘›π‘‘Γ£π‘œ
𝑝

𝑝
𝑃

𝑋 +𝑋 +β‹―+𝑋𝑛
Lei dos Grandes NΓΊmeros: {𝑋𝑛 , 𝑛 ∈ β„•} 𝑠𝑒𝑐 𝑑𝑒 𝑉
...
𝐴′ 𝑠 , {𝑀𝑋𝑛 (𝑠), 𝑛 ∈ β„•} π‘π‘œπ‘Ÿπ‘Ÿπ‘’π‘ π‘π‘œπ‘›π‘‘π‘’π‘›π‘‘π‘’ 𝑠𝑒𝑐 𝑑𝑒 𝑓𝑒𝑛çá𝑒𝑠 π‘”π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿπ‘Žπ‘  𝑑𝑒
𝑑

π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘œπ‘  π‘Ž π‘π‘œπ‘›π‘‘ π‘›π‘’π‘π‘’π‘ π‘ Γ‘π‘Ÿπ‘–π‘Ž 𝑒 𝑠𝑒𝑓
...
𝐹𝑋 (π‘₯) Γ© lim 𝑀𝑋𝑛 (𝑠) = 𝑀𝑋 (𝑠)
π‘›βŸΆ+∞

Teorema do limite central: {𝑋𝑛 , 𝑛 ∈ β„•} 𝑠𝑒𝑐 𝑑𝑒 𝑉
...
βˆšπ‘›

∩ 𝑁(0,1)

MATHTOPICS | Hermano Valido


Title: Probability and Statistics sheet
Description: This item contains 4 pages of basic definitions about probability and statistics (undergraduate level). It includes tens of formulas and almost all Random Variable Models (discrete and continuous)