Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Derivatives & Primitives Sheet
Description: A sheet containing all the rules for derivatives and primitives (including substitution and Leibniz rule) and 2 pages of examples.
Description: A sheet containing all the rules for derivatives and primitives (including substitution and Leibniz rule) and 2 pages of examples.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Derivatives
π·πππππππ π’(π‘) πππ π£(π‘) ππ ππ’πππ‘ππππ ππ π‘ π‘βπ ππππππ€πππ ππ’πππ πππππ¦:
ο·
ο·
ο·
ο·
ο·
ο·
ο·
ο·
ο·
π
ππ‘
π
ππ‘
π
ππ‘
π
ππ‘
π
ππ‘
π
ππ‘
π
ππ‘
π
ππ‘
π
ππ‘
ππππππππππ‘πππ
(ππππ π‘πππ‘) = 0
(ππ‘ + π) = π
π
(π’ + π£ ) =
(π’
...
ππ‘ π£
ππ‘
π
(ππ’) = π
π)
π
π’ + ππ‘ π£
ππ‘
ππ‘
π
(π’ β π£ ) =
ππ‘
π
πππ (π’) = β ππ‘ (π’)
...
ππ‘ π£
π
ππ’ = ππ‘ (π’)
...
π π’
π
=
ππ‘
ππ‘
ο·
π
ππ‘
(π’
π£)
=
π
π£
...
ππ‘ π’
πΏππππππ‘βπππ
ο·
ο·
π
ππ‘
π
ππ‘
ln(π’) =
π
π’
ππ‘
π
π’
ππ‘
log π (π’) = π’
...
sec(π’)
...
πππ‘(π’)
πΌππ£πππ π ππππππππππ‘πππ
ο·
ο·
ο·
ο·
π’
(u)
...
csc(π’)2
π
π’
ππ‘
π πβ1
π
...
ππ‘π£
ππ‘
π£2
π
π ππ(π’) = ππ‘ (π’)
...
π’πβ1
...
βπ’2 β1
csc(π‘)β1 = β
π
π’
ππ‘
π’
...
2
...
4
...
6
...
8
...
10
...
π
(π‘ 2 + 2π‘) = 2π‘ + 2
ππ‘
π
(π‘ 2
...
π 2π‘ + π‘ 2
...
π 2π‘ βπ‘ 2
...
cosβ‘(π‘ 2 )
ππ‘
π
ππ‘
sin(π‘ 2 )4 = 4
...
2π‘
...
ππ π (2π‘)
...
πππ (π’) ππ‘ = π ππ(π’)
ππ‘
π
π+1
π’
ο· β« π’
...
πππ‘(π’) ππ‘ = β ln|π ππ(π’)|
ππ‘
π
ο· β« π’
...
ππ’ ππ‘ =
ππ‘
ln(π)
ο· β«
π
ο· β« π’
...
π’π ππ‘ =
ππ‘
ο· β«
ππππππππππ‘πππ
π
π’
ππ‘
π’
π
ο· β« π’
...
ππ π(π’)2 ππ‘ = βπππ‘(π’)
ππ‘
ππ‘ = ln |π’|
π
π’
ππ‘
1+π’2
π
π’
ππ‘
ππ‘ = π‘ππ
β1
π
ο· β« π’
...
csc(π’) ππ‘ = ln|ππ π (π’) +
ππ‘
πππ‘(π’)|
β« π’
...
π’
ππ‘
ππ‘
ππ’ππ π‘ππ‘π’π‘πππ πΌππ‘πππππ π π’ππ: β« π’(π‘) ππ‘ = β« π’(π£ (π‘))
...
π ππ(π₯)
βπ 2 + π‘ 2
π‘ = π
...
π ππ(π₯)
MATHTOPICS | Hermano Valido
Integral Examples
1
...
β«(2π‘)5 ππ‘ = 2 β« 2
...
β« π ππ‘ = 7 β« 7
...
β« 3+π‘ 6 ππ‘ = 3 β« 3+π‘ 6 ππ‘ = ππ |3 + π‘ 6 | + π , π β β
2π‘
5
...
β« πππ (3π‘) ππ‘ = 3 β« 3
...
β« πππ (π‘)3 ππ‘ = β« πππ (π‘)
...
(1 β π ππ(π‘))2 ππ‘ =
= β« πππ (π‘) β πππ (π‘)
...
β« π 2π‘
...
π‘ β β«
π 2π‘
1
2
ππ‘ =
9
...
π‘ππ(π₯))2
1
β«π
=β«
10
...
π‘ β
...
π ππΏπΈ)
ππ₯ =
...
SUBS
...
π ππ (π‘)2 ππ‘ =
= π ππ (π‘)
...
(π ππ (π‘)2 β 1) ππ‘ =
= π ππ (π‘)
...
π‘ππ(π‘) + ππ | π ππ (π‘) + π‘ππ(π‘)| β β« π ππ (π‘)3 ππ‘
Thus β« π ππ (π‘)3 ππ‘ = π ππ (π‘)
...
π‘ππ(π‘) + ππ | π ππ (π‘) + π‘ππ(π‘)| βΊ
1
βΊ β« π ππ (π‘)3 ππ‘ = [π ππ (π‘)
Title: Derivatives & Primitives Sheet
Description: A sheet containing all the rules for derivatives and primitives (including substitution and Leibniz rule) and 2 pages of examples.
Description: A sheet containing all the rules for derivatives and primitives (including substitution and Leibniz rule) and 2 pages of examples.