Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Derivatives & Primitives Sheet
Description: A sheet containing all the rules for derivatives and primitives (including substitution and Leibniz rule) and 2 pages of examples.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Derivatives
𝐷𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑒(𝑑) π‘Žπ‘›π‘‘ 𝑣(𝑑) π‘Žπ‘  π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›π‘  π‘œπ‘“ 𝑑 π‘‘β„Žπ‘’ π‘“π‘œπ‘™π‘™π‘œπ‘€π‘–π‘›π‘” π‘Ÿπ‘’π‘™π‘’π‘  π‘Žπ‘π‘π‘™π‘¦:

ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·

πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘
πœ•
πœ•π‘‘

π‘‡π‘Ÿπ‘–π‘”π‘œπ‘›π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘
(π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘) = 0
(π‘Žπ‘‘ + 𝑏) = π‘Ž
πœ•

(𝑒 + 𝑣 ) =
(𝑒
...
πœ•π‘‘ 𝑣
πœ•π‘‘
πœ•

(π‘Žπ‘’) = π‘Ž
𝑛)

πœ•

𝑒 + πœ•π‘‘ 𝑣
πœ•π‘‘

πœ•π‘‘

𝑛

(𝑒 ∘ 𝑣 ) =

πœ•π‘‘

πœ•

π‘π‘œπ‘ (𝑒) = βˆ’ πœ•π‘‘ (𝑒)
...
πœ•π‘‘ 𝑣

πœ•

π‘Žπ‘’ = πœ•π‘‘ (𝑒)
...
𝑒 𝑒
𝑒
=
πœ•π‘‘
πœ•π‘‘

ο‚·

πœ•
πœ•π‘‘

(𝑒

𝑣)

=

πœ•
𝑣
...
πœ•π‘‘ 𝑒

πΏπ‘œπ‘”π‘Žπ‘Ÿπ‘–π‘‘β„Žπ‘šπ‘–π‘
ο‚·
ο‚·

πœ•
πœ•π‘‘
πœ•
πœ•π‘‘

ln(𝑒) =

πœ•
𝑒
πœ•π‘‘
πœ•
𝑒
πœ•π‘‘

log π‘Ž (𝑒) = 𝑒
...
sec(𝑒)
...
π‘π‘œπ‘‘(𝑒)
πΌπ‘›π‘£π‘’π‘Ÿπ‘ π‘’ π‘‡π‘Ÿπ‘–π‘”π‘œπ‘›π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘

ο‚·
ο‚·
ο‚·
ο‚·

𝑒

(u)
...
csc(𝑒)2

πœ•
𝑒
πœ•π‘‘
𝑛 π‘›βˆ’1
𝑛
...
πœ•π‘‘π‘£
πœ•π‘‘
𝑣2

πœ•

𝑠𝑖𝑛(𝑒) = πœ•π‘‘ (𝑒)
...
π‘’π‘›βˆ’1
...
βˆšπ‘’2 βˆ’1

csc(𝑑)βˆ’1 = βˆ’

πœ•
𝑒
πœ•π‘‘
𝑒
...

2
...

4
...

6
...

8
...


10
...


πœ•

(𝑑 2 + 2𝑑) = 2𝑑 + 2

πœ•π‘‘
πœ•

(𝑑 2
...
𝑒 2𝑑 + 𝑑 2
...
𝑒 2𝑑 βˆ’π‘‘ 2
...
cos⁑(𝑑 2 )

πœ•π‘‘
πœ•

πœ•π‘‘

sin(𝑑 2 )4 = 4
...
2𝑑
...
𝑐𝑠𝑐 (2𝑑)
...
π‘π‘œπ‘ (𝑒) 𝑑𝑑 = 𝑠𝑖𝑛(𝑒)
𝑑𝑑

𝑑

𝑛+1
𝑒

ο‚· ∫ 𝑒
...
π‘π‘œπ‘‘(𝑒) 𝑑𝑑 = βˆ’ ln|𝑠𝑖𝑛(𝑒)|
𝑑𝑑

𝑑

ο‚· ∫ 𝑒
...
π‘Žπ‘’ 𝑑𝑑 =
𝑑𝑑
ln(π‘Ž)

ο‚· ∫

𝑑

ο‚· ∫ 𝑒
...
𝑒𝑛 𝑑𝑑 =
𝑑𝑑

ο‚· ∫

π‘‡π‘Ÿπ‘–π‘”π‘œπ‘›π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘

𝑑
𝑒
𝑑𝑑

𝑒

𝑑

ο‚· ∫ 𝑒
...
𝑐𝑠𝑐(𝑒)2 𝑑𝑑 = βˆ’π‘π‘œπ‘‘(𝑒)
𝑑𝑑

𝑑𝑑 = ln |𝑒|

𝑑
𝑒
𝑑𝑑
1+𝑒2
𝑑
𝑒
𝑑𝑑

𝑑𝑑 = π‘‘π‘Žπ‘›

βˆ’1

𝑑

ο‚· ∫ 𝑒
...
csc(𝑒) 𝑑𝑑 = ln|𝑐𝑠𝑐 (𝑒) +
𝑑𝑑
π‘π‘œπ‘‘(𝑒)|

∫ 𝑒
...
𝑒
𝑑𝑑
𝑑𝑑

π‘†π‘’π‘π‘ π‘‘π‘–π‘‘π‘’π‘‘π‘–π‘œπ‘› πΌπ‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ 𝑅𝑒𝑙𝑒: ∫ 𝑒(𝑑) 𝑑𝑑 = ∫ 𝑒(𝑣 (𝑑))
...
𝑠𝑖𝑛(π‘₯)

βˆšπ‘Ž 2 + 𝑑 2

𝑑 = π‘Ž
...
𝑠𝑒𝑐(π‘₯)

MATHTOPICS | Hermano Valido

Integral Examples
1
...
∫(2𝑑)5 𝑑𝑑 = 2 ∫ 2
...
∫ 𝑒 𝑑𝑑 = 7 ∫ 7
...
∫ 3+𝑑 6 𝑑𝑑 = 3 ∫ 3+𝑑 6 𝑑𝑑 = 𝑙𝑛 |3 + 𝑑 6 | + 𝑐 , 𝑐 ∈ ℝ
2𝑑

5
...
∫ π‘π‘œπ‘ (3𝑑) 𝑑𝑑 = 3 ∫ 3
...
∫ π‘π‘œπ‘ (𝑑)3 𝑑𝑑 = ∫ π‘π‘œπ‘ (𝑑)
...
(1 βˆ’ 𝑠𝑖𝑛(𝑑))2 𝑑𝑑 =
= ∫ π‘π‘œπ‘ (𝑑) βˆ’ π‘π‘œπ‘ (𝑑)
...
∫ 𝑒 2𝑑
...
𝑑 βˆ’ ∫

𝑒 2𝑑
1

2

𝑑𝑑 =

9
...
π‘‘π‘Žπ‘›(π‘₯))2
1

βˆ«π‘Ž
=∫

10
...
𝑑 βˆ’


...
π‘…π‘ˆπΏπΈ)

𝑑π‘₯ =


...
SUBS
...
𝑠𝑒𝑐 (𝑑)2 𝑑𝑑 =
= 𝑠𝑒𝑐 (𝑑)
...
(𝑠𝑒𝑐 (𝑑)2 βˆ’ 1) 𝑑𝑑 =
= 𝑠𝑒𝑐 (𝑑)
...
π‘‘π‘Žπ‘›(𝑑) + 𝑙𝑛 | 𝑠𝑒𝑐 (𝑑) + π‘‘π‘Žπ‘›(𝑑)| βˆ’ ∫ 𝑠𝑒𝑐 (𝑑)3 𝑑𝑑

Thus ∫ 𝑠𝑒𝑐 (𝑑)3 𝑑𝑑 = 𝑠𝑒𝑐 (𝑑)
...
π‘‘π‘Žπ‘›(𝑑) + 𝑙𝑛 | 𝑠𝑒𝑐 (𝑑) + π‘‘π‘Žπ‘›(𝑑)| ⟺
1

⟺ ∫ 𝑠𝑒𝑐 (𝑑)3 𝑑𝑑 = [𝑠𝑒𝑐 (𝑑)
Title: Derivatives & Primitives Sheet
Description: A sheet containing all the rules for derivatives and primitives (including substitution and Leibniz rule) and 2 pages of examples.