Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: ORDINARY DIFFERENTIAL EQUATONS UNIT_II_NOTES-02
Description: this is the continuation for the ORDINARY DIFFERENTIAL EQUATONS UNIT_II_NOTES-01

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


LEIBNITZ'S LINEAR EQUATION
The standard form of linear equation of first order commonly known
as Leibnitz's linear equation
i
...


BERNOULLI’S EQUATION
A first order DE that can be written in the form

dy
 P ( x) y  Q ( x ) y n
...

Note:(i )

It is named after the Swiss Mathematician Jacob Bernoulli (1654
-1705) who is known for his basic work in probability distribution
theory
...

(iii ) It is clear that when n>1, the DE is non-linear
...


METHOD OF SOLUTION (WHEN n=0)
Consider the equation
i
...
where n=0
...


Problem:-01
Solve

dy
 y  cos x
...
----(1)
dx

It is of the form

dy
 P( x) y  Q ( x ) ----(2)
dx

Comparing the equations (1) and (2), we have
P  1,

& Q  cos x

Integration factor
e Pdx  e  dx  e  dx  e x

General solution
ye pdx   Qe pdx dx  c
ye  x   cos xe  x dx  c

  e ax cos bxdx 

e ax
[a cos bx  b sin bx]
a 2  b2

Here a=-1, b=1, substituting in the formula, we get
ye

x

ye

x

e x

[sin x  cos x ]  c
(1)2  (1) 2

e x

[sin x  cos x ]  c
2

Which is the required solution
...

x dx x

Solution:The given DE is

1 dy y
 tan x  cos x
...

dx

It is of the form

(Multiply by x)

dy
 P( x) y  Q ( x ) ----(2)
dx

Comparing the equations (1), (2), we get
P  tan x,

& Q  x cos x

Integration factor
1

e  Pdx  e  tan xdx  e log cos x  sec x

General solution
ye pdx   Qe pdx dx  c
y sec x   x cos x sec xdx  c
y sec x   xdx  c

x2
 y sec x 
c
2

Which is the required solution
...

dx

Solution :The given DE is

dy
 y cot x  sin 2 x
...


Problem:-04
Solve

dy

 y cot x  4 x cos ecx , given that y=0 when x=
dx
2

Solution:The given DE is

dy
 y cot x  4 x cos ecx -----(1)
dx

It is of the form

dy
 P( x) y  Q ( x ) ----(2)
dx


2

Given condition y(x)=0 when x= -----(3)
Comparing the equations (1), (2), we get
P  cot x,

&

Q  4 x cos ecx

Integration factor
e Pdx  e cot xdx  elog sin x  sin x

[ y  y( x)]

General solution
ye pdx   Qe pdx dx  c
y sin x   4 x cos ecx sin xdx  c
y sin x   4 xdx  c

y sin x  4

x2
 c  2 x 2  c ----(4)
2

To find the constant C
We use the given condition (3) in (4), we get
i
...
sin( )  2( )  c
2
4
0
...

2
2

Which is the required solution
...
e

dy
 P( x) y  Q( x) y n
...

dx

dy
 P( x) y  Q( x) y
...

i
...


Problem:-01
Solve

dy
 xy  4 y
dx

Solution:The given DE's is

dy
 xy  4 y -----(1)
dx

The equation (1) is of the form

dy
 P( x) y  Q( x) y
...


Problem:-02
Solve

dy
 ( x 2  2) y  (tan x) y
dx

Solution:The given DE's is

dy
 ( x 2  2) y  (tan x) y -----(1)
dx

The equation (1) is of the form

dy
 P( x) y  Q( x) y
...


METHOD OF SOLUTION (WHEN n=2,3,4,
...
where n=2,3
...
----(1)
dx

Divide the equation by yn
1 dy
1
1
 P ( x) n y  Q( x) n y n
...

n
y dx
y

y n

dy
 P( x) y1n  Q( x)
...

dx
1 dz
 P( x) z  Q( x)
...

dx
dz
 P1 ( x) z  Q1 ( x)
...

This equation can be solved using following procedure
Integration factor
I
...


Problem:-1
Solve

dy y
  x2 y6
dx x

Solution:The given DE is

dy y
  x2 y6
dx x

-----(1)

It is of the form

dy
 P( x) y  Q( x) y n
...
F= e

 P ( x ) dx

e



5
dx
x

General solution
ze  P ( x ) dx   Q ( x)e P ( x ) dx dx  c

zx 5   (5 x2 ) x 5 dx  c
zx5  5  x3 dx  c

5

 e 5 log x  e log x  x 5

zx5  5
zx 5 
z

x 31
x2
 c  5
c
3  1
2

5x 2
c
2

5x3
 cx5
2

(Multiply x 5 )

Which is the general solution of equation (4)
...

Sub z=y-5, we get
y 5 

5x3
 cx5
2

(Multiply x5 )

Which is the required solution
...
----(3)
dy

Multiply equation (2) by x-2, we get
x 2

dx
 x 2 yx  x 2 y 3 x 2
dy

x 2

dx
 yx 1  y 3 -----(4)
dy

Let z=x1-n=x1-2=x -1
Differentiate z with respect to x, we get
dz
  x 11   x2
dx

dz   x2 dx

Update the above values in equation (4), we get


dz
 yz  y 3
dy

dz
 yz   y 3
dy

(Multiply by -1)

It is of the form

dz
 P( y) z  Q( y) ----(6)
dy

Comparing the equations (5) and (6), we get
P(y)=y

and

Q(y)=-y3

Integrating factor
I
...


1 t
te  et  c
2









 tet  2et  c

y2
t=
Sub
2 in the above equation, we get
ze

ze



y2
2

y2
2

 (2  t )e t  c

2

 (2  y )e

y2
2

c

Which is the general solution of equation (5)
...

Sub z=x-1, we get
1

x e

y2
2

2

 (2  y )e

1
 (2  y 2 )  ce
x

y2
2

 y2
2

c

(Multiply on both sides e

 y2
2

)

Which is the required solution
...
F= e  P ( x ) dx  e  2 xdx  e x

2

General solution
ze  P ( x ) dx   Q ( x)e P ( x ) dx dx  c
2

2

2

2

ze x   x3 e x dx  c
ze x   x2 e x xdx  c ----(5)
Let t=x2 ,

dt
dt
 2 x   xdx
dx
2

Substitute the above values in the right side of equation (6), we get
2
 dt 
ze x   (t )et    c
2

2

ze x 
2

ze x 

1 t
 te dt  c
2

1   et
(t ) 
2   1


 et

(1)



1


  c


 chain rule of integration  udv  uv ' u ' v '' u '' v '''
...

The general solution of (1) is obtained by replacing z into y
...


EXERCISE
Solve the following DE's
dy

y

dz

z

2 6
1
...
(logz)1  1  cx

2
2
...
dx  y tan x  y sec x

3 2
4
...
2 xy '  10 x y  y

dy x 2  y 2
6
...
x( x  y )dy  y dy  0

dy

tan y

x
8
...
e  dx  1  e
dy

2
10
...
6 y ' 2 y  ty

3
12
...


1 1 t

 ce t
y3
2

Ans
Title: ORDINARY DIFFERENTIAL EQUATONS UNIT_II_NOTES-02
Description: this is the continuation for the ORDINARY DIFFERENTIAL EQUATONS UNIT_II_NOTES-01