Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Section 1-3-Problem Solving
Description: Introduction to Complex Numbers on the college level. Includes detailed examples of adding, subtracting, multiplying and dividing Complex Numbers.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Section 1­4: Complex Numbers 

Part 1: Complex Numbers 
Imaginary Number: a number combined with the 
value “​
i​
, defined as –  
  ​  √ ­1  
i ​
=
When the square root to a negative number is to 
be found, take the square root of the number and 
then replace the negative sign with “​
i​
” 
 

Ex
...
)

√­81 ➔ √81i ➔ 9i 
√­60 ➔ √60i ➔ 2i√15 

 

(Note: Usually the “​ is used with the root, but 
+​

unless the number is the solution to an equation, 
use the positive only
...
) 3 + 7i ➔ ‘3’: real  ‘7i’: imaginary 
 

Part 2: Combining Complex Numbers 

A) Adding / Subtracting Complex Numbers 
1) Add / Subtract the real numbers 
2) Add / Subtract the imaginary numbers 
3) Combine the two parts into a complex 
number 
 

(Note: Complex numbers are usually written with 
parentheses, so any “–” outside the number must 
be distributed
...
)

Ex
...
O
...
L
...
) (3 + 4i)(9 – 8i) 
F: 3 × 9 = 27 
O: 3 × (­8i) = ­24i
27–24i+36i+32  
I: 4i × 9 = 36i
= 59 
+12i 
2​
L: 4i × (­8i) = 32i​  
 = 32
C) Dividing Complex Numbers 
1) Conjugate the denominator 
2) Multiply both parts by the conjugate  
3) Simplify the result 
Ex
Title: Section 1-3-Problem Solving
Description: Introduction to Complex Numbers on the college level. Includes detailed examples of adding, subtracting, multiplying and dividing Complex Numbers.