Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Exercise 4
...
org
Calculus and Analytic Geometry, MATHEMATICS 12
Merging man and maths
Available online @ http://www
...
org, Version: 1
...
6
Point of intersection of lines
Let l1 : a1 x + b1 y + c1 = 0
l2 : a2 x + b2 y + c2 = 0 be non-parallel lines
...
Then
a1 x1 + b1 y1 + c1 = 0
...
(ii )
Solving (i ) and (ii ) simultaneously, we have
x1
− y1
1
=
=
b1c2 − b2c1 a1c2 − a2c1 a1b2 − a2b1
x1
1
− y1
1
⇒
=
and
=
b1c2 − b2c1 a1b2 − a2b1
a1c2 − a2c1 a1b2 − a2b1
bc −b c
a c − a2c1
⇒ x1 = 1 2 2 1 and y1 = − 1 2
a1b2 − a2b1
a1b2 − a2b1
bc −b c
a c − a2c1
Hence 1 2 2 1 , − 1 2
is the point of intersection of l1 and l2
...
Let l1 : a1 x + b1 y + c1 = 0
l2 : a2 x + b2 y + c2 = 0
Then equation of line passing through the point of intersection of l1 and l2 is
l1 + k l2 = 0 , where k is constant
...
e
...
Now if ( x, y ) is the point of intersection of l1 and l2 then
FSC-II / Ex
...
4 - 2
x
−y
1
=
=
(−2)(2) − (−1)(1) (1)(2) − (2)(1) (1)(−1) − (2)(−2)
x
−y
1
⇒
=
=
−4 + 1 2 − 2 −1 + 4
x −y 1
⇒
=
=
−3 0 3
x 1
−y 1
⇒
=
=
and
−3 3
0 3
−3
0
⇒ x=
and
y=−
3
3
⇒ x = −1
and
y=0
Hence ( −1,0 ) is the point of intersection
...
Now if ( x, y ) is the point of intersection of l1 and l2 then
x
−y
1
=
=
−1 − 24 −3 − 12 6 − 1
x
−y 1
⇒
=
=
−25 −15 5
x
1
−y 1
⇒
=
and
=
−25 5
−15 5
−25
15
⇒ x=
= −5 and y = = 3
5
5
Hence ( −5,3) is the point of intersection
...
Question # 2
Find an equation of the line through
(i)
the point ( 2, −9 ) and the intersection of the lines 2 x + 5 y − 8 = 0 and
3x − 4 y − 6 = 0
(ii) the intersection of the lines
x− y−4=0
7 x + y + 20 = 0
6 x + y − 14 = 0
(a) Parallel
(ii) Perpendicular
to the line 6 x + y − 14 = 0
(iii) through the intersection of the lines x + 2 y + 3 = 0, 3x + 4 y + 7 = 0
Available at http://www
...
org
FSC-II / Ex
...
4 - 3
And making equal intercepts on the axes
...
(i)
Since ( 2, −9 ) lies on (i) therefore put x = 2 and y = −9 in (i)
2(2) + 5(−9) − 8 + k ( 3(2) − 4(−9) − 6 ) = 0
⇒ 4 − 45 − 8 + k ( 6 + 36 − 6 ) = 0
⇒ − 49 + 36k = 0
49
⇒ 36k = 49
⇒ k=
36
Putting value of k in (i)
49
2 x + 5 y − 8 + ( 3x − 4 y − 6 ) = 0
36
⇒ 72 x + 180 y − 288 + 49 ( 3 x − 4 y − 6 ) = 0
× ing by 36
⇒ 72 x + 180 y − 288 + 147 x − 196 y − 294 = 0
⇒ 219 x − 16 y − 582 = 0 is the required equation
...
(i)
⇒ (1 + 7 k ) x + ( −1 + k ) y + ( − 4 + 20k ) = 0
1 + 7k
Slope of l4 = m1 = −
−1 + k
6
Slope of l3 = m2 = − = −6
1
(a) If l3 and l4 are parallel then
m1 = m2
1 + 7k
⇒ −
= −6
−1 + k
⇒ 1 + 7 k = 6 ( −1 + k ) ⇒ 1 + 7 k = −6 + 6k
⇒ 7 k − 6k = −6 − 1
⇒ k = −7
Putting value of k in (i)
x − y − 4 − 7 ( 7 x + y + 20 ) = 0
⇒ x − y − 4 − 49 x − 7 y − 140 = 0
Available at http://www
...
org
FSC-II / Ex
...
4 - 4
(b)
⇒ − 48 x − 8 y − 144 = 0
⇒ 6 x + y + 18 = 0
is the required equation
If l3 and l4 are ⊥ then
m1m2 = −1
1 + 7k
⇒ −
( −6 ) = −1
k
−
1
+
⇒ 6 (1 + 7 k ) = − ( −1 + k )
⇒ 6 + 42k = 1 − k
⇒ 42k + k = 1 − 6
⇒ 43k = −5
⇒ k =−
5
43
Putting in (i) we have
5
( 7 x + y + 20 ) = 0
43
43 x − 43 y − 172 − 5 ( 7 x + y + 20 ) = 0
43 x − 43 y − 172 − 35 x − 5 y − 100 = 0
8 x − 48 y − 272 = 0
x − 6 y − 34 = 0 is the required equation
...
mathcity
...
4
...
Question # 3
Find an equation of the line through the intersection of
16 x − 10 y − 33 = 0 ; 12 x + 14 y + 29 = 0 and the intersection of
x − y + 4 = 0 ; x − 7y + 2 = 0
Solution
Let l1 : 16 x − 10 y − 33 = 0
l2 : 12 x + 14 y + 29 = 0
l3 : x − y + 4 = 0
l4 : x − 7 y + 2 = 0
For point of intersection of l1 and l2
x
−y
1
=
=
−290 + 462 464 + 396 224 + 120
x
−y
1
⇒
=
=
172 860 334
x
1
−y
1
⇒
=
and
=
172 334
860 334
172 1
860
5
⇒ x=
=
and
y=−
=−
334 2
334
2
1 5
⇒ , − is a point of intersection of l1 and l2
...
x
−y
1
=
=
−2 + 28 2 − 4 −7 + 1
x −y 1
⇒
=
=
26 −2 −6
x
1
−y 1
⇒
=
and
=
26 −6
−2 −6
26
13
2
1
⇒ x=
=−
and
y=
=−
−6
3
−6
3
13 1
⇒ − , − is a point of intersection of l3 and l4
...
mathcity
...
4
...
Three Concurrent Lines
Suppose l1 : a1 x + b1 y + c1 = 0
l2 : a2 x + b2 y + c2 = 0
l3 : a3 x + b3 y + c3 = 0
If l1 , l2 and l3 are concurrent (intersect at one point) then
a1 b1 c1
a2 b2 c2 = 0
a3 b3 c3
See proof on book at page 208
l1
l2
l3
Question # 4
Find the condition that the lines y = m1 x + c1 ; y = m2 x + c2 and y = m3 x + c3 are
concurrent
...
Available at http://www
...
org
FSC-II / Ex
...
4 - 7
Question # 5
Determine the value of P such that the lines 2 x − 3 y − 1 = 0 , 3 x − y − 5 = 0
and 3 x + py + 8 = 0 meet at a point
...
e
...
If α1 and α 2
be inclinations and m1 and m2 be slopes of
lines l1 and l2 respectively, Let θ be a angle
from line l1 to l2 then θ is given by
m − m1
tan θ = 2
1 + m1m2
Y
l2
l1
ψ
θ
α1
α2
X
See proof on book at page 219
Question # 6
Show that the lines 4 x − 3 y − 8 = 0, 3 x − 4 y − 6 = 0 and x − y − 2 = 0 are
concurrent and the third-line bisects the angle formed by the first two lines
...
mathcity
...
4
...
4 4
l2
Slope of l1 = m1 = − =
−3 3
3 3
θ2
Slope of l2 = m2 = −
=
−4 4
θ1
1
Slope of l3 = m3 = − = 1
−1
Now let θ1 be angle from l1 to l3 and θ 2 be a
angle from l3 to l2
...
l3
l1
( )
( )
Question # 7
The vertices of a triangle are A ( −2,3) , B ( −4,1) and C ( 3,5 )
...
(i) Centroid of triangle is the intersection of medians and is given by
x1 + x2 + x3 y1 + y2 + y3
,
3
3
−2 − 4 + 3 3 + 1 + 5
−3 9
=
,
= , = ( −1,3)
3
3
3 3
Hence ( −1,3) is the centroid of the triangle
...
1− 3
−2
Slope of AB = m1 =
=
=1
−4 + 2 −2
5 −1 4
Slope of BC = m2 =
=
3+ 4 7
Since altitudes are ⊥ to sides therefore
1
1
Slope of altitude on AB = − = − = −1
m1
1
A
B
C
Available at http://www
...
org
FSC-II / Ex
...
4 - 9
1
1
7
=−
=−
4
4
m2
7
Equation of altitude on AB with slope −1 from C ( 3,5 )
y − 5 = −1( x − 3)
⇒ y − 5 = −x + 3 ⇒ x − 3 + y − 5 = 0
⇒ x + y − 8 = 0 ………
...
(ii)
For point of intersection of (i) and (ii)
x
−y
1
=
=
2 + 32 2 + 56 4 − 7
x −y 1
⇒
=
=
34 58 −3
x
1
−y 1
⇒
=
and
=
34 −3
58 −3
34
58 58
⇒ x=−
and y = − =
3
−3 3
34 58
Hence − , is orthocentre of triangle ABC
...
Let D and E are midpoints of side AB and BC respectively
...
mathcity
...
4
...
(iii)
7
1
Now equation of ⊥ bisector having slope − through E − ,3
4
2
7
1
7
y − 3 = − x + ⇒ 4 y − 12 = −7 x −
4
2
2
7
17
⇒ 7 x + + 4 y − 12 = 0 ⇒ 7 x + 4 y − = 0
2
2
⇒ 14 x + 8 y − 17 = 0 ……………
...
6
6
34 58
25 31
Now to check ( −1,3) , − , and , − are collinear, let
6
3 3
6
−1
− 34
3
1
58
1
3
3
25
− 31 1
6
6
58 31 34 25 1054 1450
= −1 + − 3 − − + 1
−
6 3
6 18
18
3
49 31
= −1 − 3 − + 1( −22 )
2 2
49 93
= − + − 22 = 0
2
2
Hence centroid, orthocentre and circumcentre of triangle are collinear
...
If so, find the point where they meet
...
mathcity
...
4
...
For point of concurrency, we find intersection of l1 and l2 (You may choose any
two lines)
x
−y
1
=
=
18 − 32 −24 + 24 −16 + 9
x
−y 1
⇒
=
=
−14 0 −7
x
1
−y 1
=
and
=
⇒
−14 −7
0 −7
−14
0
⇒ x=
= 2 and y = −
=0
−7
−7
Hence ( 2,0 ) is the point of concurrency
...
Also find measures of the angles of
the triangle
...
mathcity
...
4
...
5
5
For point of intersection of l2 and l3
...
5 5
Now for point of intersection of l1 and l3
x
−y
1
=
=
8 + 6 −4 + 12 1 + 4
x −y 1
⇒
=
=
14 8 5
x 1
−y 1
⇒
=
and
=
14 5
8 5
14
8
⇒ x=
and
y=−
5
5
14 8
⇒ , − is the point of intersection of l1 and l3
...
We say these vertices as A, B and C respectively
...
Then
Available at http://www
...
org
x
FSC-II / Ex
...
4 - 13
5
3− 1
m1 − m3
2
tan α =
=
1 + m1m3 1 + (3) 1
( 2)
⇒ α = tan −1 (1)
Now
tan β =
2 =1
5
2
⇒ α = 45
m2 − m1
−2 − 3
−5
=
=
=1
1 + m2 m1 1 + (−3) ( 3) −5
⇒ β = tan −1 (1) ⇒
Now
=
β = 45
5
1 +2
m3 − m2
2
=
= 2 =∞
tan γ =
1 + m3m2 1 + 1 ( −2 ) 0
2
( )
⇒ γ = tan −1 (∞)
⇒ γ = 90
...
mathcity
...
4
...
4
6
⇒ θ = 180 − 49
...
6
Now acute angle between lines = 180 − 130
...
4
(b)
(c)
Do yourself as above
...
69
(d)
( )
( )( )
Also acute angle between lines = 78
...
mathcity
...
4
...
Then
−3 − 11 −14 7
y
m1 =
=
=
−6 + 2
−4 2
A
−9 + 3 −6
3
m2 =
=
=−
4 + 6 10
5
α
m3
m
1
11 + 9 20
10
m3 =
=
=−
−2 − 4 −6
3
x
β
γ
Let α , β and γ denotes angles of triangle at vertex
m2
B
C
A, B and C respectively
...
64
64
7 − −3
m1 − m2
2
5
tan β =
=
1 + m1m2 1 + 7
−3
2
5
7 +3
41
2
5
10 = − 41 × 10 = − 41
=
=
11
10 11
1 − 21
−11
10
10
41
41
⇒ − tan β =
⇒ tan (180 − β ) =
∵ tan(180 − θ ) = − tan θ
11
11
41
⇒ 180 − β = tan −1 = 74
...
98
⇒ β = 105
...
mathcity
...
4
...
34
45
(b) Given vertices A ( 6,1) , B ( 2,7 ) and C ( −6, −7 )
Let m1 , m2 and m3 denotes the slopes of side AB , BC and CA respectively
...
Then
C
2 − −3
m3 − m1
3
2
tan α =
=
1 + m3m1 1 + 2
−3
3
2
13
2 +3
3
2
=
= 6 =∞
1−1
0
( )
( )( )
⇒ α = tan −1 ( ∞ )
⇒ α = 90
−3 −7
m1 − m2
2
4
tan β =
=
3
7
1 + m1m2 1 + −
2
4
−13
−13
4
4 = 13 × 8 = 2
=
=
4 13
1 − 21
−13
8
8
⇒ β = tan −1 (2) ⇒ β = 63
...
57
2
( )( )
(c)
Do yourself as above
...
Available at http://www
...
org
FSC-II / Ex
...
4 - 17
Question # 12
Find the interior angles of the quadrilateral whose vertices are A ( 5, 2 ) , B ( −2,3) ,
C ( −3, −4 ) and D ( 4, −5 )
Solution
Given vertices are A ( 5, 2 ) , B ( −2,3) , C ( −3, −4 ) and D ( 4, −5 )
Let m1 , m2 , m3 and m4 be slopes of side AB, BC , CD and DA
...
Then
50
7− −1
7+ 1
m4 − m1
7
7
tan α =
=
=
= 7 =∞
1
1−1
1 + m4 m1 1 + ( 7 ) −
0
7
(
)
(
⇒ α = tan −1 ( ∞ )
)
⇒ α = 90
−1 −7
− 50
m1 − m2
7
7 =∞
tan β =
=
=
1 + m1m2 1 + − 1 ( 7 )
0
7
(
⇒ β = tan −1 ( ∞ )
⇒
)
β = 90
(
7− −1
m2 − m3
7
tan γ =
=
1 + m2 m3 1 + ( 7 ) − 1
(
⇒ γ = tan −1 ( ∞ )
)
7
50
7
=
= 7 =∞
1−1
0
7+ 1
)
⇒ γ = 90
−1 −7
− 50
m3 − m4
7
7 =∞
tan δ =
=
=
1 + m3m4 1 + − 1 ( 7 )
0
7
(
⇒ δ = tan −1 ( ∞ )
)
⇒ δ = 90
Trapezium
If any two opposite sides of the quadrilateral are parallel
then it is called trapezium
...
mathcity
...
4
...
Solution
Given vertices are A ( −1, −1) , B ( −3,0 ) , C ( 3,7 ) and D (1,8 )
Let m1 , m2 , m3 and m4 be slopes of side AB, BD, DC and CA
...
Now suppose α , β , γ and δ are angels of
quadrilateral at vertices A, B, C and D respectively
...
Now for point of intersection of l2 and l3
x
−y
1
=
=
3 + 82 30 + 123 20 − 3
x −y 1
⇒
=
=
85 153 17
Available at http://www
...
org
x
FSC-II / Ex
...
4 - 19
x −y 1
=
=
85 153 17
x
1
−y 1
⇒
=
and
=
85 17
153 17
85
153
⇒ x=
= 5 and
y=−
= −9
17
17
⇒ ( 5, −9 ) is the point of intersection of l2 and l3
...
Now area of triangle having vertices ( 3,11) , ( 5, −9 ) and (1, −3) is given by:
⇒
3 11 1
1
5 −9 1
2 1 −3 1
1
= 3 ( −9 + 3) − 11( 5 − 1) + 1( −15 + 9 )
2
1
1
= 3 ( −6 ) − 11( 4 ) + 1( −6 ) = −18 − 44 − 6
2
2
1
1
= −68 = (68) = 34 sq
...
Find the centre of the
circum centre of the triangle?
Solution
Same Question # 7(c)
Question # 16
Express the given system of equations in matrix form
...
(a) x + 3 y − 2 = 0 ;
2 x − y + 4 = 0 ; x − 11 y + 14 = 0
(b) 2 x + 3 y + 4 = 0 ;
x − 2 y − 3 = 0 ; 3x + y − 8 = 0
(c) 3 x − 4 y − 2 = 0 ;
x + 2 y − 4 = 0 ; 3x − 2 y + 5 = 0
Available at http://www
...
org
FSC-II / Ex
...
4 - 20
Solution
(a)
x + 3y − 2 = 0
2x − y + 4 = 0
x − 11 y + 14 = 0
In matrix form
1 3 −2 x 0
2 −1 4 y = 0
1 −11 14 1 0
Coefficient matrix of the system is
1 3 −2
A = 2 −1 4
1 −11 14
⇒ A = 1(−14 + 44) − 3(28 − 4) − 2(−22 + 1)
= 1(30) − 3(24) − 2(−21)
= 30 − 72 + 42 = 0
Hence given lines are concurrent
...
(c)
Do yourself as above
Question # 17
Find a system of linear equations corresponding to the given matrix form
...
1 0 −1 x 0
(a) 2 0 1 y = 0
0 −1 2 1 0
1 1 2 x 0
(b) 2 4 −3 y = 0
3 6 −5 1 0
Available at http://www
...
org
FSC-II / Ex
...
4 - 21
Solution
(a)
1 0 −1 x 0
2 0 1 y = 0
0 −1 2 1 0
x + 0 − 1 0
x − 1 0
⇒ 2 x + 0 + 1 = 0 ⇒ 2 x + 1 = 0
0 − y + 2 0
− y + 2 0
Equating the elements
x −1 = 0
2x + 1 = 0
−y + 2 = 0
are the required equation of lines
...
Do yourself as above
...
mathcity
...
4 (Page 223)
Calculus and Analytic Geometry Mathematic 12
Punjab Textbook Board, Lahore
...
MathCity
...
Updated: October,10,2017
...
0 International
https://creativecommons
...
0/
Under this licence if you remix, transform,
or build upon the material, you may not
distribute the modified material
...
mathcity