Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: quadratic functions
Description: quadratic functions all structure

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Ο€

CHAPTER 2

Quadratic functions

Quadratic Functions
Quadratic functions are in the form of 𝒇(𝒙) = π’‚π’™πŸ + 𝒃𝒙 + 𝒄, where 𝒂 β‰  𝟎 and
represented by:

Vertex (minimum point)
axis of symmetry

Vertex (minimum point)
𝒂<𝟎

𝒂>𝟎

Roots of a quadratic function:
β†’ The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘
2π‘Ž

Ο€

CHAPTER 2

Types of roots of a quadratic function:
1) Two different (distinct) real roots:

2) Two equal real roots (one real roots):

3) No real roots:

P
...

Discriminant = π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘, we have three cases:
1) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ > 0

"two distinct "("different")" real roots"

2) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 0

"two equal real roots "("one root")

3) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ < 0

"no real roots"

Examples:
1) State the nature of the roots for each of the following quadratics:
a) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 10π‘₯ + 25
βˆ΅π‘Ž=1

𝑏 = βˆ’10

𝑐 = 25

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 100 βˆ’ 100 = 0

It has one real root (two equal roots)

-------------------------------------------------------------------------------------------------------------------------

b) 𝑓(π‘₯) = βˆ’π‘₯ 2 + 5π‘₯ + 6
∡ π‘Ž = βˆ’1

𝑏=5

𝑐=6

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 25 + 24 = 49 > 0

It has two different roots (two distinct roots)

-------------------------------------------------------------------------------------------------------------------------

c) 𝑓(π‘₯) = βˆ’2π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 6
∡ π‘Ž = βˆ’2

𝑏 = βˆ’5

𝑐 = βˆ’6

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 25 βˆ’ 48 = βˆ’23 < 0

It has no real roots

P
...

βˆ΅π‘Ž=3

𝑏=2

𝑐=π‘˜

∡ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 0

two equal roots
4

1

∴ 4 βˆ’ 4 Γ— 3 Γ— π‘˜ = 0 β†’ 4 βˆ’ 12π‘˜ = 0 β†’ 12π‘˜ = 4 β†’ π‘˜ = 12 = 3
-------------------------------------------------------------------------------------------------------------------------

3) The equation π‘˜π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 7 = 0 has two distinct real roots, find the possible value
of k
...
56

βˆ’4
28

β†’ π‘˜>

βˆ’1
7

Ο€

CHAPTER 2

Quadratic functions

 Test yourself:
1) Solve the equation 2π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 1 = 0, giving the roots in exact form

------------------------------------------------------------------------------------------------------------------------

2) Solve the equation 3π‘₯ 2 βˆ’ 4π‘₯ βˆ’ 9 = 0, giving your answers to 2 d
...


-------------------------------------------------------------------------------------------------------------------------

3) State the nature of the roots for each of the following quadratics:
a) 2π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 = 0

-------------------------------------------------------------------------------------------------------------------------

b) 2π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 5 = 0

P
...


P
ii) Stationary point (2, 2)

type of stationary point is minimum

-----------------------------------------------------------------------------------------------------------------------

6) put π‘₯ 2 + 4π‘₯ + 3 in the form (π‘₯ + π‘Ž)2 + 𝑏 stating the values of a and b
...


Solution
βˆ’π‘₯ 2 + 2π‘₯ + 2 = βˆ’1(π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 2)
= βˆ’1[(π‘₯ βˆ’ 1)2 βˆ’ 1 βˆ’ 2] = βˆ’1[(π‘₯ βˆ’ 1)2 βˆ’ 3]
= βˆ’(π‘₯ βˆ’ 1)2 + 3 = 3 βˆ’ (π‘₯ βˆ’ 1)2
P
...


Solution
2π‘₯ 2 βˆ’ 16π‘₯ + 37 = 2(π‘₯ 2 βˆ’ 8π‘₯) + 37
= 2[(π‘₯ βˆ’ 4)2 βˆ’ 16] + 37
= 2(π‘₯ βˆ’ 4)2 βˆ’ 32 + 37
= 2(π‘₯ βˆ’ 4)2 + 5

A = 2, B = -4 and C = 5

-----------------------------------------------------------------------------------------------------------------------

9) Express 3 + 4π‘₯ βˆ’ 2π‘₯ 2 in the form β„Ž βˆ’ π‘˜(π‘₯ + 𝑝)2 , stating the values of h, k and p

Solution
βˆ’2π‘₯ 2 + 4π‘₯ + 3 = βˆ’2(π‘₯ 2 βˆ’ 2π‘₯) + 3
= βˆ’2[(π‘₯ βˆ’ 1)2 βˆ’ 1] + 3
= βˆ’2(π‘₯ βˆ’ 1)2 + 2 + 3 = 5 βˆ’ 2(π‘₯ βˆ’ 1)2
β„Ž = 5 , π‘˜ = 2 π‘Žπ‘›π‘‘ 𝑝 = βˆ’1
-----------------------------------------------------------------------------------------------------------------------

10) Express π‘₯ 2 βˆ’ 3π‘₯ in the form (π‘₯ βˆ’ π‘Ž)2 +𝑏 stating the values of a and b

Solution
3 2

9

π‘₯ 2 βˆ’ 3π‘₯ = (π‘₯ βˆ’ 2) βˆ’ 4

3

9

π‘Ž = 2, 𝑏 = βˆ’4

-----------------------------------------------------------------------------------------------------------------------

11) Express 4π‘₯ βˆ’ 2π‘₯ 2 in the form𝐴 βˆ’ 𝐡(π‘₯ βˆ’ 𝐢)2 , stating the values of A, B and C
...
63

Ο€

CHAPTER 2

Quadratic functions

12) Express 8π‘₯ βˆ’ π‘₯ 2 in the form π‘Ž βˆ’ (π‘₯ + 𝑏)2 , stating the values of a and b

Solution
βˆ’π‘₯ 2 + 8π‘₯ = βˆ’1(π‘₯ 2 βˆ’ 8π‘₯) = βˆ’1[(π‘₯ βˆ’ 4)2 βˆ’ 16]
= 16 βˆ’ (π‘₯ βˆ’ 4)2

π‘Ž = 16, 𝑏 = βˆ’4

-----------------------------------------------------------------------------------------------------------------------

P
...
Find the value of a and b
...
Hence, find the coordinates of the vertex and state whether it is minimum or
maximum
...
65

Ο€

CHAPTER 2

Quadratic functions

c) π‘₯ 2 + 3π‘₯ βˆ’ 7

------------------------------------------------------------------------------------------------------------------------

d) 5 βˆ’ 6π‘₯ + π‘₯ 2

------------------------------------------------------------------------------------------------------------------------

e) 2π‘₯ 2 + 12π‘₯ βˆ’ 5

------------------------------------------------------------------------------------------------------------------------

f) 3π‘₯ 2 βˆ’ 12π‘₯ + 3

P
...

a) 𝑦 = (π‘₯ βˆ’ 2)2 + 3

P
...
68

Ο€

CHAPTER 2

Quadratic functions

Graph of quadratic function
How to sketch a quadratic function:
β†’ Find the roots of the function
...

β†’ Find the coordinates of the vertex of the function
...


Example:
Sketch each of the following function:
a) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 6π‘₯ + 8

Solution
Roots β‡’ π‘₯ 2 βˆ’ 6π‘₯ + 8 = 0 β‡’ (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 2) = 0 β‡’ π‘₯ = 2 , π‘₯ = 4
𝑦-intercept β‡’ π‘₯ = 0 β‡’ 𝑦 = 8 β‡’ (0 , 8)
Vertex β‡’ π‘₯ =

βˆ’π‘
2π‘Ž

=

βˆ’βˆ’6
2Γ—1

=3

,

𝑦 = (3)2 βˆ’ 6(3) + 8 = βˆ’1 β‡’ (3 , βˆ’ 1)

P
...
7 , π‘₯ = 0
...
70

Ο€

CHAPTER 2

Quadratic functions

 Test yourself:
Sketch the graph of the following Function:
1) 𝑓(π‘₯) = π‘₯ 2 + 2π‘₯ βˆ’ 3

------------------------------------------------------------------------------------------------------------------------

2) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 2π‘₯

P
...
72

Ο€

CHAPTER 2

Quadratic functions

Quadratic Inequalities
How to solve quadratic inequality:
β†’ Change the inequality to an equation
...

β†’ Sketch the curve and locate the roots
...


Examples:
1) Solve each of the following inequality;
a) π‘₯ 2 βˆ’ 3π‘₯ + 2 β‰₯ 0

Solution
π‘₯ 2 βˆ’ 3π‘₯ + 2 = 0 β‡’ (π‘₯ βˆ’ 2)(π‘₯ βˆ’ 1) = 0 β‡’ π‘₯ = 2
∴π‘₯≀1

and

1

,

2

x

π‘₯=1

π‘₯β‰₯2

------------------------------------------------------------------------------------------------------------------------

b) π‘₯ 2 βˆ’ 5π‘₯ + 6 ≀ 0
2

Solution
π‘₯ 2 βˆ’ 5π‘₯ + 6 = 0 β‡’ (π‘₯ βˆ’ 2)(π‘₯ βˆ’ 3) = 0 β‡’ π‘₯ = 2
∴2≀π‘₯≀3

P
...


Solution
π‘Ž=π‘˜

,

𝑏=π‘˜

,

𝑐=2

π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ < 0 β‡’ π‘˜ 2 βˆ’ 4(π‘˜)(2) < 0 β‡’ π‘˜ 2 βˆ’ 8π‘˜ < 0
π‘˜ 2 βˆ’ 8π‘˜ = 0 β‡’ π‘˜(π‘˜ βˆ’ 8) = 0 β‡’ π‘˜ = 0

,

∴0<π‘˜<8

P
...


Solution
π‘Ž=π‘˜

,

𝑏=3

,

𝑐=π‘˜

βˆ’πŸ‘
𝟐

π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ > 0 β‡’ 32 βˆ’ 4(π‘˜)(π‘˜) > 0 β‡’ 9 βˆ’ 4π‘˜ 2 > 0
9 βˆ’ 4π‘˜ 2 = 0 β‡’ (3 βˆ’ 2π‘˜)(3 + 2π‘˜) = 0 β‡’ π‘˜ =
∴

βˆ’3
2

βˆ’3
2

πŸ‘
𝟐

k

3

,

π‘˜=2

3

<π‘˜<2

------------------------------------------------------------------------------------------------------------------------

4) Find the set of values of k for which the equation π‘₯ 2 + π‘˜π‘₯ + 2π‘˜ βˆ’ 3 = 0 has real
roots
...
75

,

π‘˜=6

k

Ο€

CHAPTER 2

Quadratic functions

 Test yourself:
1) Solve each of the following inequality:
a) π‘₯ 2 βˆ’ 7π‘₯ + 12 < 0

------------------------------------------------------------------------------------------------------------------------

b) 2π‘₯ 2 βˆ’ 18π‘₯ β‰₯ 0

------------------------------------------------------------------------------------------------------------------------

c) 2π‘₯ 2 βˆ’ 5π‘₯ + 3 > 0

P
...


P
...
78

,

π‘₯ = βˆ’1

Ο€

CHAPTER 2

Quadratic functions

Relation between a line and a curve:

1) The line cuts the curve at
two different (distinct) points

2) The line is tangent to
the curve
x

3) The line neither cuts
nor touches the curve

How to get the relation between a line and a curve:
We use π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ for the equation formed when we substitute the line in the
curve
...


2) π›₯ = 0

The line is a tangent to the curve
...


P
...


Solution
From the line β‡’ 𝑦 = π‘₯ βˆ’ 1
1

Into the curve β‡’ π‘₯For the line to intersect the curve at two distinct points βˆ†> 0
π‘Ž=3

𝑏 = βˆ’4 βˆ’ π‘š

𝑐=3

(βˆ’4 βˆ’ π‘š)2 βˆ’ 4(3)(3) > 0
16 + 8π‘š + π‘š2 βˆ’ 36 > 0
π‘š2 + 8π‘š βˆ’ 20 > 0
-10

∴ π‘š2 + 8π‘š βˆ’ 20 = 0
π‘š = βˆ’10

,

∴ π‘š ≀ βˆ’10

π‘š=2

P
...
112

π‘˜ < βˆ’4

Ο€

CHAPTER 2

8) 𝑦 = π‘˜π‘₯ βˆ’ 4 β†’ (1)

𝑦 = π‘₯ 2 βˆ’ 2π‘₯

Quadratic functions

β†’ (2)

from (2) into (1):
π‘₯ 2 βˆ’ 2π‘₯ = π‘˜π‘₯ βˆ’ 4
π‘₯ 2 βˆ’ 2π‘₯ βˆ’ π‘˜π‘₯ + 4 = 0
For the line to intersect the curve at two distinct points, βˆ†> 0
π‘Ž=1

𝑏 = βˆ’2 βˆ’ π‘˜

𝑐=4

𝑏 2 βˆ’ 4π‘Žπ‘ > 0
(βˆ’2 βˆ’ π‘˜ )2 βˆ’ 4(1)(4) > 0
4 + 4π‘˜ + π‘˜ 2 βˆ’ 16 > 0
π‘˜ 2 + 4π‘˜ βˆ’ 12 > 0

-6

∴ π‘˜ 2 + 4π‘˜ βˆ’ 12 = 0

∴ π‘˜ < βˆ’6

π‘˜ = βˆ’6

,

2
π‘˜>2
,

π‘˜=2

-------------------------------------------------------------------------------------------------------------------------

9) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 3π‘₯
i) 𝑓(π‘₯) > 4
π‘₯ 2 βˆ’ 3π‘₯ > 4
π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 > 0

-1

4

∴ π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 = 0
π‘₯ = βˆ’1

,

∴ π‘₯ < βˆ’1

π‘₯=4

,

π‘₯>4

-------------------------------------------------------------------------------------------------------------------------

ii) π‘₯ 2 βˆ’ 3π‘₯ ≑ (π‘₯ βˆ’ π‘Ž)2 βˆ’ 𝑏 ≑ π‘₯ 2 βˆ’ 2π‘Žπ‘₯ + π‘Ž2 βˆ’ 𝑏
by equating coefficients:
βˆ’2π‘Ž = βˆ’3
3

π‘Ž=2

π‘Ž2 βˆ’ 𝑏 = 0
9
4

βˆ’π‘ = 0
9

βˆ΄π‘=4
P
...
114

Ο€

CHAPTER 2

Quadratic functions

Method(2):
𝑦 2 = 4π‘₯ β†’ (2)

𝑦 = 2π‘₯ + 𝑐 β†’ (1)

π‘“π‘Ÿπ‘œπ‘š (2): 𝑦 = √4π‘₯ = √4 π‘₯ √π‘₯ = 2√π‘₯
π‘–π‘›π‘‘π‘œ (1): 2√π‘₯ = 2π‘₯ + 𝑐
∴ 2π‘₯ βˆ’ 2√π‘₯ + 𝑐 = 0
𝑙𝑒𝑑 π‘š = √π‘₯

∴ 2π‘š2 βˆ’ 2π‘š + 𝑐 = 0

For the line to be tangent to the curve βˆ†= 0
π‘Ž=2

𝑏 = βˆ’2

𝑐=𝑐

4 βˆ’ 4(2)(𝑐) = 0
4 βˆ’ 8𝑐 =
Title: quadratic functions
Description: quadratic functions all structure