Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Ο
CHAPTER 2
Quadratic functions
Quadratic Functions
Quadratic functions are in the form of π(π) = πππ + ππ + π, where π β π and
represented by:
Vertex (minimum point)
axis of symmetry
Vertex (minimum point)
π<π
π>π
Roots of a quadratic function:
β The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53
βπΒ±βπ2 β4ππ
2π
Ο
CHAPTER 2
Types of roots of a quadratic function:
1) Two different (distinct) real roots:
2) Two equal real roots (one real roots):
3) No real roots:
P
...
Discriminant = π₯ = π 2 β 4ππ, we have three cases:
1) π₯ = π 2 β 4ππ > 0
"two distinct "("different")" real roots"
2) π₯ = π 2 β 4ππ = 0
"two equal real roots "("one root")
3) π₯ = π 2 β 4ππ < 0
"no real roots"
Examples:
1) State the nature of the roots for each of the following quadratics:
a) π(π₯) = π₯ 2 β 10π₯ + 25
β΅π=1
π = β10
π = 25
β΄ π₯ = π 2 β 4ππ = 100 β 100 = 0
It has one real root (two equal roots)
-------------------------------------------------------------------------------------------------------------------------
b) π(π₯) = βπ₯ 2 + 5π₯ + 6
β΅ π = β1
π=5
π=6
β΄ π₯ = π 2 β 4ππ = 25 + 24 = 49 > 0
It has two different roots (two distinct roots)
-------------------------------------------------------------------------------------------------------------------------
c) π(π₯) = β2π₯ 2 β 5π₯ β 6
β΅ π = β2
π = β5
π = β6
β΄ π₯ = π 2 β 4ππ = 25 β 48 = β23 < 0
It has no real roots
P
...
β΅π=3
π=2
π=π
β΅ π₯ = π 2 β 4ππ = 0
two equal roots
4
1
β΄ 4 β 4 Γ 3 Γ π = 0 β 4 β 12π = 0 β 12π = 4 β π = 12 = 3
-------------------------------------------------------------------------------------------------------------------------
3) The equation ππ₯ 2 β 2π₯ β 7 = 0 has two distinct real roots, find the possible value
of k
...
56
β4
28
β π>
β1
7
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Solve the equation 2π₯ 2 β 2π₯ β 1 = 0, giving the roots in exact form
------------------------------------------------------------------------------------------------------------------------
2) Solve the equation 3π₯ 2 β 4π₯ β 9 = 0, giving your answers to 2 d
...
-------------------------------------------------------------------------------------------------------------------------
3) State the nature of the roots for each of the following quadratics:
a) 2π₯ 2 β 3π₯ β 4 = 0
-------------------------------------------------------------------------------------------------------------------------
b) 2π₯ 2 β 3π₯ β 5 = 0
P
...
P
ii) Stationary point (2, 2)
type of stationary point is minimum
-----------------------------------------------------------------------------------------------------------------------
6) put π₯ 2 + 4π₯ + 3 in the form (π₯ + π)2 + π stating the values of a and b
...
Solution
βπ₯ 2 + 2π₯ + 2 = β1(π₯ 2 β 2π₯ β 2)
= β1[(π₯ β 1)2 β 1 β 2] = β1[(π₯ β 1)2 β 3]
= β(π₯ β 1)2 + 3 = 3 β (π₯ β 1)2
P
...
Solution
2π₯ 2 β 16π₯ + 37 = 2(π₯ 2 β 8π₯) + 37
= 2[(π₯ β 4)2 β 16] + 37
= 2(π₯ β 4)2 β 32 + 37
= 2(π₯ β 4)2 + 5
A = 2, B = -4 and C = 5
-----------------------------------------------------------------------------------------------------------------------
9) Express 3 + 4π₯ β 2π₯ 2 in the form β β π(π₯ + π)2 , stating the values of h, k and p
Solution
β2π₯ 2 + 4π₯ + 3 = β2(π₯ 2 β 2π₯) + 3
= β2[(π₯ β 1)2 β 1] + 3
= β2(π₯ β 1)2 + 2 + 3 = 5 β 2(π₯ β 1)2
β = 5 , π = 2 πππ π = β1
-----------------------------------------------------------------------------------------------------------------------
10) Express π₯ 2 β 3π₯ in the form (π₯ β π)2 +π stating the values of a and b
Solution
3 2
9
π₯ 2 β 3π₯ = (π₯ β 2) β 4
3
9
π = 2, π = β4
-----------------------------------------------------------------------------------------------------------------------
11) Express 4π₯ β 2π₯ 2 in the formπ΄ β π΅(π₯ β πΆ)2 , stating the values of A, B and C
...
63
Ο
CHAPTER 2
Quadratic functions
12) Express 8π₯ β π₯ 2 in the form π β (π₯ + π)2 , stating the values of a and b
Solution
βπ₯ 2 + 8π₯ = β1(π₯ 2 β 8π₯) = β1[(π₯ β 4)2 β 16]
= 16 β (π₯ β 4)2
π = 16, π = β4
-----------------------------------------------------------------------------------------------------------------------
P
...
Find the value of a and b
...
Hence, find the coordinates of the vertex and state whether it is minimum or
maximum
...
65
Ο
CHAPTER 2
Quadratic functions
c) π₯ 2 + 3π₯ β 7
------------------------------------------------------------------------------------------------------------------------
d) 5 β 6π₯ + π₯ 2
------------------------------------------------------------------------------------------------------------------------
e) 2π₯ 2 + 12π₯ β 5
------------------------------------------------------------------------------------------------------------------------
f) 3π₯ 2 β 12π₯ + 3
P
...
a) π¦ = (π₯ β 2)2 + 3
P
...
68
Ο
CHAPTER 2
Quadratic functions
Graph of quadratic function
How to sketch a quadratic function:
β Find the roots of the function
...
β Find the coordinates of the vertex of the function
...
Example:
Sketch each of the following function:
a) π(π₯) = π₯ 2 β 6π₯ + 8
Solution
Roots β π₯ 2 β 6π₯ + 8 = 0 β (π₯ β 4)(π₯ β 2) = 0 β π₯ = 2 , π₯ = 4
π¦-intercept β π₯ = 0 β π¦ = 8 β (0 , 8)
Vertex β π₯ =
βπ
2π
=
ββ6
2Γ1
=3
,
π¦ = (3)2 β 6(3) + 8 = β1 β (3 , β 1)
P
...
7 , π₯ = 0
...
70
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
Sketch the graph of the following Function:
1) π(π₯) = π₯ 2 + 2π₯ β 3
------------------------------------------------------------------------------------------------------------------------
2) π(π₯) = π₯ 2 β 2π₯
P
...
72
Ο
CHAPTER 2
Quadratic functions
Quadratic Inequalities
How to solve quadratic inequality:
β Change the inequality to an equation
...
β Sketch the curve and locate the roots
...
Examples:
1) Solve each of the following inequality;
a) π₯ 2 β 3π₯ + 2 β₯ 0
Solution
π₯ 2 β 3π₯ + 2 = 0 β (π₯ β 2)(π₯ β 1) = 0 β π₯ = 2
β΄π₯β€1
and
1
,
2
x
π₯=1
π₯β₯2
------------------------------------------------------------------------------------------------------------------------
b) π₯ 2 β 5π₯ + 6 β€ 0
2
Solution
π₯ 2 β 5π₯ + 6 = 0 β (π₯ β 2)(π₯ β 3) = 0 β π₯ = 2
β΄2β€π₯β€3
P
...
Solution
π=π
,
π=π
,
π=2
π₯ = π 2 β 4ππ < 0 β π 2 β 4(π)(2) < 0 β π 2 β 8π < 0
π 2 β 8π = 0 β π(π β 8) = 0 β π = 0
,
β΄0<π<8
P
...
Solution
π=π
,
π=3
,
π=π
βπ
π
π₯ = π 2 β 4ππ > 0 β 32 β 4(π)(π) > 0 β 9 β 4π 2 > 0
9 β 4π 2 = 0 β (3 β 2π)(3 + 2π) = 0 β π =
β΄
β3
2
β3
2
π
π
k
3
,
π=2
3
<π<2
------------------------------------------------------------------------------------------------------------------------
4) Find the set of values of k for which the equation π₯ 2 + ππ₯ + 2π β 3 = 0 has real
roots
...
75
,
π=6
k
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Solve each of the following inequality:
a) π₯ 2 β 7π₯ + 12 < 0
------------------------------------------------------------------------------------------------------------------------
b) 2π₯ 2 β 18π₯ β₯ 0
------------------------------------------------------------------------------------------------------------------------
c) 2π₯ 2 β 5π₯ + 3 > 0
P
...
P
...
78
,
π₯ = β1
Ο
CHAPTER 2
Quadratic functions
Relation between a line and a curve:
1) The line cuts the curve at
two different (distinct) points
2) The line is tangent to
the curve
x
3) The line neither cuts
nor touches the curve
How to get the relation between a line and a curve:
We use π₯ = π 2 β 4ππ for the equation formed when we substitute the line in the
curve
...
2) π₯ = 0
The line is a tangent to the curve
...
P
...
Solution
From the line β π¦ = π₯ β 1
1
Into the curve β π₯For the line to intersect the curve at two distinct points β> 0
π=3
π = β4 β π
π=3
(β4 β π)2 β 4(3)(3) > 0
16 + 8π + π2 β 36 > 0
π2 + 8π β 20 > 0
-10
β΄ π2 + 8π β 20 = 0
π = β10
,
β΄ π β€ β10
π=2
P
...
112
π < β4
Ο
CHAPTER 2
8) π¦ = ππ₯ β 4 β (1)
π¦ = π₯ 2 β 2π₯
Quadratic functions
β (2)
from (2) into (1):
π₯ 2 β 2π₯ = ππ₯ β 4
π₯ 2 β 2π₯ β ππ₯ + 4 = 0
For the line to intersect the curve at two distinct points, β> 0
π=1
π = β2 β π
π=4
π 2 β 4ππ > 0
(β2 β π )2 β 4(1)(4) > 0
4 + 4π + π 2 β 16 > 0
π 2 + 4π β 12 > 0
-6
β΄ π 2 + 4π β 12 = 0
β΄ π < β6
π = β6
,
2
π>2
,
π=2
-------------------------------------------------------------------------------------------------------------------------
9) π(π₯) = π₯ 2 β 3π₯
i) π(π₯) > 4
π₯ 2 β 3π₯ > 4
π₯ 2 β 3π₯ β 4 > 0
-1
4
β΄ π₯ 2 β 3π₯ β 4 = 0
π₯ = β1
,
β΄ π₯ < β1
π₯=4
,
π₯>4
-------------------------------------------------------------------------------------------------------------------------
ii) π₯ 2 β 3π₯ β‘ (π₯ β π)2 β π β‘ π₯ 2 β 2ππ₯ + π2 β π
by equating coefficients:
β2π = β3
3
π=2
π2 β π = 0
9
4
βπ = 0
9
β΄π=4
P
...
114
Ο
CHAPTER 2
Quadratic functions
Method(2):
π¦ 2 = 4π₯ β (2)
π¦ = 2π₯ + π β (1)
ππππ (2): π¦ = β4π₯ = β4 π₯ βπ₯ = 2βπ₯
πππ‘π (1): 2βπ₯ = 2π₯ + π
β΄ 2π₯ β 2βπ₯ + π = 0
πππ‘ π = βπ₯
β΄ 2π2 β 2π + π = 0
For the line to be tangent to the curve β= 0
π=2
π = β2
π=π
4 β 4(2)(π) = 0
4 β 8π =