Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: quadratic functions
Description: quadratic functions all structure

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Ο€

CHAPTER 2

Quadratic functions

Quadratic Functions
Quadratic functions are in the form of 𝒇(𝒙) = π’‚π’™πŸ + 𝒃𝒙 + 𝒄, where 𝒂 β‰  𝟎 and
represented by:

Vertex (minimum point)
axis of symmetry

Vertex (minimum point)
𝒂<𝟎

𝒂>𝟎

Roots of a quadratic function:
β†’ The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘
2π‘Ž

Ο€

CHAPTER 2

Types of roots of a quadratic function:
1) Two different (distinct) real roots:

2) Two equal real roots (one real roots):

3) No real roots:

P
...

Discriminant = π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘, we have three cases:
1) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ > 0

"two distinct "("different")" real roots"

2) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 0

"two equal real roots "("one root")

3) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ < 0

"no real roots"

Examples:
1) State the nature of the roots for each of the following quadratics:
a) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 10π‘₯ + 25
βˆ΅π‘Ž=1

𝑏 = βˆ’10

𝑐 = 25

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 100 βˆ’ 100 = 0

It has one real root (two equal roots)

-------------------------------------------------------------------------------------------------------------------------

b) 𝑓(π‘₯) = βˆ’π‘₯ 2 + 5π‘₯ + 6
∡ π‘Ž = βˆ’1

𝑏=5

𝑐=6

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 25 + 24 = 49 > 0

It has two different roots (two distinct roots)

-------------------------------------------------------------------------------------------------------------------------

c) 𝑓(π‘₯) = βˆ’2π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 6
∡ π‘Ž = βˆ’2

𝑏 = βˆ’5

𝑐 = βˆ’6

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 25 βˆ’ 48 = βˆ’23 < 0

It has no real roots

P
...

βˆ΅π‘Ž=3

𝑏=2

𝑐=π‘˜

∡ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 0

two equal roots
4

1

∴ 4 βˆ’ 4 Γ— 3 Γ— π‘˜ = 0 β†’ 4 βˆ’ 12π‘˜ = 0 β†’ 12π‘˜ = 4 β†’ π‘˜ = 12 = 3
-------------------------------------------------------------------------------------------------------------------------

3) The equation π‘˜π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 7 = 0 has two distinct real roots, find the possible value
of k
...
56

βˆ’4
28

β†’ π‘˜>

βˆ’1
7

Ο€

CHAPTER 2

Quadratic functions

 Test yourself:
1) Solve the equation 2π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 1 = 0, giving the roots in exact form

------------------------------------------------------------------------------------------------------------------------

2) Solve the equation 3π‘₯ 2 βˆ’ 4π‘₯ βˆ’ 9 = 0, giving your answers to 2 d
...


-------------------------------------------------------------------------------------------------------------------------

3) State the nature of the roots for each of the following quadratics:
a) 2π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 = 0

-------------------------------------------------------------------------------------------------------------------------

b) 2π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 5 = 0

P
...


P
...


Example:
Find the coordinates of the vertex of the function𝑓(π‘₯) = βˆ’2π‘₯ 2 βˆ’ 3π‘₯ + 4; hence,
state the maximum or minimum value of f(x) and the value of x at which it occurs
...
59

3
4

41
8

Ο€

CHAPTER 2

Quadratic functions

2) Put the function 𝑓(π‘₯) = π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐 in the form of the completing the square
𝑓(π‘₯) = 𝐴(π‘₯ + 𝐡)2 + 𝐢
...
The vertex is (-B, C)
...


Solution
βˆ’2π‘₯ 2 βˆ’ 3π‘₯ + 4 ≑ 𝐴(π‘₯ + 𝐡)2 + 𝐢 ≑ 𝐴(π‘₯ 2 + 2𝐡π‘₯ + 𝐡 2 ) + 𝐢 ≑ 𝐴π‘₯ 2 + 2𝐴𝐡π‘₯ + 𝐴𝐡 2 + 𝐢

𝐴 = βˆ’2
βˆ’3

3

2𝐴𝐡 = βˆ’3 β‡’ 2(βˆ’2)𝐡 = βˆ’3 β‡’ βˆ’4𝐡 = βˆ’3 β‡’ 𝐡 = βˆ’4 = 4
3

𝐴𝐡 2 + 𝐢 = 4 β‡’ βˆ’2(4)2 + 𝐢 = 4 β‡’
3 2

∴ 𝑓(π‘₯) = βˆ’2 (π‘₯ + 4) +

41

,

8

βˆ’18
16

9

+𝐢 =4β‡’ 𝐢 =4+8 =
3 41

the vertex is (βˆ’ 4 ,

8

41
8

)

-------------------------------------------------------------------------------------------------------------------------

2) The quadratic π‘₯ 2 βˆ’ 10π‘₯ + 7 is denoted by f(x)
...
Hence, find the least possible value of f(x) and the corresponding value
of x
...
60

Ο€

CHAPTER 2

Quadratic functions

3) The equation of a curve is 𝑦 = 8π‘₯ βˆ’ π‘₯ 2
...

b) Find the coordinates of the vertex and state whether it is maximum or minimum
...
61

Ο€

CHAPTER 2

Quadratic functions

5) If 𝑓(π‘₯) = 2π‘₯ 2 βˆ’ 8π‘₯ + 10
i) Express 𝑓(π‘₯) is the form π‘Ž(π‘₯ + 𝑏)2 + 𝑐, where a, b and c are constant
ii) hence, state the coordinates of the stationary point of 𝑓(π‘₯) and state its type
...
105

Ο€

CHAPTER 2

Quadratic functions

33) If 𝑓(π‘₯) = 2π‘₯ 2 βˆ’ 5π‘₯ + 2
i) Express 𝑓(π‘₯) in the form 𝐴(π‘₯ + 𝐡)2 + 𝐢
ii) State the max/min value of 𝑓(π‘₯) and the value of π‘₯ at which it occurs

-------------------------------------------------------------------------------------------------------------------------

34) If 𝑔(π‘₯) = 3 βˆ’ 7π‘₯ βˆ’ 3π‘₯ 2
i) Express 𝑔(π‘₯) in the form 𝐴 βˆ’ 𝐡(π‘₯ + 𝐢)2
ii) State the max/min value of 𝑔(π‘₯) and the value of π‘₯ at which it occurs
...
106

Ο€

CHAPTER 2

Quadratic functions

35) If 𝑦 = 7 βˆ’ 10π‘₯ βˆ’ π‘₯ 2
i) Express 7 βˆ’ 10π‘₯ βˆ’ π‘₯ 2 in the form π‘Ž βˆ’ (π‘₯ βˆ’ 𝑏)2
ii) State the max/min value of 𝑦 and the value of π‘₯ at which it occurs
iii) Write down the equation of the line of symmetry of the curve 𝑦 = 7 βˆ’ 10π‘₯ βˆ’ π‘₯ 2

P
...
108

Ο€

CHAPTER 2

Quadratic functions

Model Answer
1) i) 2π‘₯ 2 + 8π‘₯ βˆ’ 10 ≑ π‘Ž(π‘₯ + 𝑏)2 + 𝑐
≑ π‘Ž(π‘₯ 2 + 2𝑏π‘₯ + 𝑏 2 ) + 𝑐
≑ π‘Žπ‘₯ 2 + 2π‘Žπ‘π‘₯ + π‘Žπ‘ 2 + 𝑐
by equating coefficients:
βˆ΄π‘Ž=2

2π‘Žπ‘ = 8

π‘Žπ‘ 2 + 𝑐 = βˆ’10

4𝑏 = 8

2(2)2 + 𝑐 = βˆ’10

𝑏=2

𝑐 = βˆ’18

∴ 2π‘₯ 2 + 8π‘₯ βˆ’ 10 ≑ 2(π‘₯ + 2)2 βˆ’ 18
------------------------------------------------------------------------------------------------------------------------

ii) for the curve 𝑦 = 2π‘₯ 2 + 8π‘₯ βˆ’ 10, from the completed square form, vertex (-2,-18)
∴ π‘™π‘’π‘Žπ‘ π‘‘ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 𝑖𝑠 βˆ’ 18 π‘Žπ‘›π‘‘ π‘œπ‘π‘π‘’π‘Ÿπ‘  π‘Žπ‘‘ π‘₯ = βˆ’2
-------------------------------------------------------------------------------------------------------------------------

iii) 𝑦 β‰₯ 14
2π‘₯ 2 + 8π‘₯ βˆ’ 10 β‰₯ 14
2π‘₯ 2 + 8π‘₯ βˆ’ 24 β‰₯ 0

2

-6

∴ 2π‘₯ 2 + 8π‘₯ βˆ’ 24 = 0
∴ π‘₯ ≀ βˆ’6

π‘₯ = βˆ’6 , π‘₯ = 2

P
...
110

Ο€

CHAPTER 2

Quadratic functions

2π‘₯ 2 βˆ’ 8π‘₯ + 14 = π‘₯ + π‘˜
∴ 2π‘₯ 2 βˆ’ 9π‘₯ + 14 βˆ’ π‘˜ = 0
for the line not to intersect the curve βˆ†< 0
π‘Ž=2

𝑏 = βˆ’9

𝑐 = 14 βˆ’ π‘˜

𝑏 2 βˆ’ 4π‘Žπ‘ < 0
81βˆ’4(2)(14 βˆ’ π‘˜) < 0
81βˆ’8(14 βˆ’ π‘˜) < 0
81 βˆ’ 112 + 8π‘˜ < 0
βˆ’31 + 8π‘˜ < 0
8π‘˜ < 31

βˆ΄π‘˜<

31
8

-------------------------------------------------------------------------------------------------------------------------

𝑦 = 3π‘₯ 2 βˆ’ 4π‘₯ + 7 β†’ (2)

5) 𝑦 = π‘šπ‘₯ + 4 β†’ (1)
π‘“π‘Ÿπ‘œπ‘š (2) π‘–π‘›π‘‘π‘œ (1):
3π‘₯ 2 βˆ’ 4π‘₯ + 7 = π‘šπ‘₯ + 4
3π‘₯ 2 βˆ’ 4π‘₯ βˆ’ π‘šπ‘₯ + 3 = 0

For the line to intersect the curve at two distinct points βˆ†> 0
π‘Ž=3

𝑏 = βˆ’4 βˆ’ π‘š

𝑐=3

(βˆ’4 βˆ’ π‘š)2 βˆ’ 4(3)(3) > 0
16 + 8π‘š + π‘š2 βˆ’ 36 > 0
π‘š2 + 8π‘š βˆ’ 20 > 0
-10

∴ π‘š2 + 8π‘š βˆ’ 20 = 0
π‘š = βˆ’10

,

∴ π‘š ≀ βˆ’10

π‘š=2

P
...
112

π‘˜ < βˆ’4

Ο€

CHAPTER 2

8) 𝑦 = π‘˜π‘₯ βˆ’ 4 β†’ (1)

𝑦 = π‘₯ 2 βˆ’ 2π‘₯

Quadratic functions

β†’ (2)

from (2) into (1):
π‘₯ 2 βˆ’ 2π‘₯ = π‘˜π‘₯ βˆ’ 4
π‘₯ 2 βˆ’ 2π‘₯ βˆ’ π‘˜π‘₯ + 4 = 0
For the line to intersect the curve at two distinct points, βˆ†> 0
π‘Ž=1

𝑏 = βˆ’2 βˆ’ π‘˜

𝑐=4

𝑏 2 βˆ’ 4π‘Žπ‘ > 0
(βˆ’2 βˆ’ π‘˜ )2 βˆ’ 4(1)(4) > 0
4 + 4π‘˜ + π‘˜ 2 βˆ’ 16 > 0
π‘˜ 2 + 4π‘˜ βˆ’ 12 > 0

-6

∴ π‘˜ 2 + 4π‘˜ βˆ’ 12 = 0

∴ π‘˜ < βˆ’6

π‘˜ = βˆ’6

,

2
π‘˜>2
,

π‘˜=2

-------------------------------------------------------------------------------------------------------------------------

9) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 3π‘₯
i) 𝑓(π‘₯) > 4
π‘₯ 2 βˆ’ 3π‘₯ > 4
π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 > 0

-1

4

∴ π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 = 0
π‘₯ = βˆ’1

,

∴ π‘₯ < βˆ’1

π‘₯=4

,

π‘₯>4

-------------------------------------------------------------------------------------------------------------------------

ii) π‘₯ 2 βˆ’ 3π‘₯ ≑ (π‘₯ βˆ’ π‘Ž)2 βˆ’ 𝑏 ≑ π‘₯ 2 βˆ’ 2π‘Žπ‘₯ + π‘Ž2 βˆ’ 𝑏
by equating coefficients:
βˆ’2π‘Ž = βˆ’3
3

π‘Ž=2

π‘Ž2 βˆ’ 𝑏 = 0
9
4

βˆ’π‘ = 0
9

βˆ΄π‘=4
P
...
114

Ο€

CHAPTER 2

Quadratic functions

Method(2):
𝑦 2 = 4π‘₯ β†’ (2)

𝑦 = 2π‘₯ + 𝑐 β†’ (1)

π‘“π‘Ÿπ‘œπ‘š (2): 𝑦 = √4π‘₯ = √4 π‘₯ √π‘₯ = 2√π‘₯
π‘–π‘›π‘‘π‘œ (1): 2√π‘₯ = 2π‘₯ + 𝑐
∴ 2π‘₯ βˆ’ 2√π‘₯ + 𝑐 = 0
𝑙𝑒𝑑 π‘š = √π‘₯

∴ 2π‘š2 βˆ’ 2π‘š + 𝑐 = 0

For the line to be tangent to the curve βˆ†= 0
π‘Ž=2

𝑏 = βˆ’2

𝑐=𝑐

4 βˆ’ 4(2)(𝑐) = 0
4 βˆ’ 8𝑐 = 0

β†’

1

𝑐=2

----------------------------------------------------------------------------------------
Title: quadratic functions
Description: quadratic functions all structure