Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Ο
CHAPTER 2
Quadratic functions
Quadratic Functions
Quadratic functions are in the form of π(π) = πππ + ππ + π, where π β π and
represented by:
Vertex (minimum point)
axis of symmetry
Vertex (minimum point)
π<π
π>π
Roots of a quadratic function:
β The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53
βπΒ±βπ2 β4ππ
2π
Ο
CHAPTER 2
Types of roots of a quadratic function:
1) Two different (distinct) real roots:
2) Two equal real roots (one real roots):
3) No real roots:
P
...
Discriminant = π₯ = π 2 β 4ππ, we have three cases:
1) π₯ = π 2 β 4ππ > 0
"two distinct "("different")" real roots"
2) π₯ = π 2 β 4ππ = 0
"two equal real roots "("one root")
3) π₯ = π 2 β 4ππ < 0
"no real roots"
Examples:
1) State the nature of the roots for each of the following quadratics:
a) π(π₯) = π₯ 2 β 10π₯ + 25
β΅π=1
π = β10
π = 25
β΄ π₯ = π 2 β 4ππ = 100 β 100 = 0
It has one real root (two equal roots)
-------------------------------------------------------------------------------------------------------------------------
b) π(π₯) = βπ₯ 2 + 5π₯ + 6
β΅ π = β1
π=5
π=6
β΄ π₯ = π 2 β 4ππ = 25 + 24 = 49 > 0
It has two different roots (two distinct roots)
-------------------------------------------------------------------------------------------------------------------------
c) π(π₯) = β2π₯ 2 β 5π₯ β 6
β΅ π = β2
π = β5
π = β6
β΄ π₯ = π 2 β 4ππ = 25 β 48 = β23 < 0
It has no real roots
P
...
β΅π=3
π=2
π=π
β΅ π₯ = π 2 β 4ππ = 0
two equal roots
4
1
β΄ 4 β 4 Γ 3 Γ π = 0 β 4 β 12π = 0 β 12π = 4 β π = 12 = 3
-------------------------------------------------------------------------------------------------------------------------
3) The equation ππ₯ 2 β 2π₯ β 7 = 0 has two distinct real roots, find the possible value
of k
...
56
β4
28
β π>
β1
7
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Solve the equation 2π₯ 2 β 2π₯ β 1 = 0, giving the roots in exact form
------------------------------------------------------------------------------------------------------------------------
2) Solve the equation 3π₯ 2 β 4π₯ β 9 = 0, giving your answers to 2 d
...
-------------------------------------------------------------------------------------------------------------------------
3) State the nature of the roots for each of the following quadratics:
a) 2π₯ 2 β 3π₯ β 4 = 0
-------------------------------------------------------------------------------------------------------------------------
b) 2π₯ 2 β 3π₯ β 5 = 0
P
...
P
...
Example:
Find the coordinates of the vertex of the functionπ(π₯) = β2π₯ 2 β 3π₯ + 4; hence,
state the maximum or minimum value of f(x) and the value of x at which it occurs
...
59
3
4
41
8
Ο
CHAPTER 2
Quadratic functions
2) Put the function π(π₯) = ππ₯ 2 + ππ₯ + π in the form of the completing the square
π(π₯) = π΄(π₯ + π΅)2 + πΆ
...
The vertex is (-B, C)
...
Solution
β2π₯ 2 β 3π₯ + 4 β‘ π΄(π₯ + π΅)2 + πΆ β‘ π΄(π₯ 2 + 2π΅π₯ + π΅ 2 ) + πΆ β‘ π΄π₯ 2 + 2π΄π΅π₯ + π΄π΅ 2 + πΆ
π΄ = β2
β3
3
2π΄π΅ = β3 β 2(β2)π΅ = β3 β β4π΅ = β3 β π΅ = β4 = 4
3
π΄π΅ 2 + πΆ = 4 β β2(4)2 + πΆ = 4 β
3 2
β΄ π(π₯) = β2 (π₯ + 4) +
41
,
8
β18
16
9
+πΆ =4β πΆ =4+8 =
3 41
the vertex is (β 4 ,
8
41
8
)
-------------------------------------------------------------------------------------------------------------------------
2) The quadratic π₯ 2 β 10π₯ + 7 is denoted by f(x)
...
Hence, find the least possible value of f(x) and the corresponding value
of x
...
60
Ο
CHAPTER 2
Quadratic functions
3) The equation of a curve is π¦ = 8π₯ β π₯ 2
...
b) Find the coordinates of the vertex and state whether it is maximum or minimum
...
61
Ο
CHAPTER 2
Quadratic functions
5) If π(π₯) = 2π₯ 2 β 8π₯ + 10
i) Express π(π₯) is the form π(π₯ + π)2 + π, where a, b and c are constant
ii) hence, state the coordinates of the stationary point of π(π₯) and state its type
...
105
Ο
CHAPTER 2
Quadratic functions
33) If π(π₯) = 2π₯ 2 β 5π₯ + 2
i) Express π(π₯) in the form π΄(π₯ + π΅)2 + πΆ
ii) State the max/min value of π(π₯) and the value of π₯ at which it occurs
-------------------------------------------------------------------------------------------------------------------------
34) If π(π₯) = 3 β 7π₯ β 3π₯ 2
i) Express π(π₯) in the form π΄ β π΅(π₯ + πΆ)2
ii) State the max/min value of π(π₯) and the value of π₯ at which it occurs
...
106
Ο
CHAPTER 2
Quadratic functions
35) If π¦ = 7 β 10π₯ β π₯ 2
i) Express 7 β 10π₯ β π₯ 2 in the form π β (π₯ β π)2
ii) State the max/min value of π¦ and the value of π₯ at which it occurs
iii) Write down the equation of the line of symmetry of the curve π¦ = 7 β 10π₯ β π₯ 2
P
...
108
Ο
CHAPTER 2
Quadratic functions
Model Answer
1) i) 2π₯ 2 + 8π₯ β 10 β‘ π(π₯ + π)2 + π
β‘ π(π₯ 2 + 2ππ₯ + π 2 ) + π
β‘ ππ₯ 2 + 2πππ₯ + ππ 2 + π
by equating coefficients:
β΄π=2
2ππ = 8
ππ 2 + π = β10
4π = 8
2(2)2 + π = β10
π=2
π = β18
β΄ 2π₯ 2 + 8π₯ β 10 β‘ 2(π₯ + 2)2 β 18
------------------------------------------------------------------------------------------------------------------------
ii) for the curve π¦ = 2π₯ 2 + 8π₯ β 10, from the completed square form, vertex (-2,-18)
β΄ ππππ π‘ π£πππ’π ππ π¦ ππ β 18 πππ ππππ’ππ ππ‘ π₯ = β2
-------------------------------------------------------------------------------------------------------------------------
iii) π¦ β₯ 14
2π₯ 2 + 8π₯ β 10 β₯ 14
2π₯ 2 + 8π₯ β 24 β₯ 0
2
-6
β΄ 2π₯ 2 + 8π₯ β 24 = 0
β΄ π₯ β€ β6
π₯ = β6 , π₯ = 2
P
...
110
Ο
CHAPTER 2
Quadratic functions
2π₯ 2 β 8π₯ + 14 = π₯ + π
β΄ 2π₯ 2 β 9π₯ + 14 β π = 0
for the line not to intersect the curve β< 0
π=2
π = β9
π = 14 β π
π 2 β 4ππ < 0
81β4(2)(14 β π) < 0
81β8(14 β π) < 0
81 β 112 + 8π < 0
β31 + 8π < 0
8π < 31
β΄π<
31
8
-------------------------------------------------------------------------------------------------------------------------
π¦ = 3π₯ 2 β 4π₯ + 7 β (2)
5) π¦ = ππ₯ + 4 β (1)
ππππ (2) πππ‘π (1):
3π₯ 2 β 4π₯ + 7 = ππ₯ + 4
3π₯ 2 β 4π₯ β ππ₯ + 3 = 0
For the line to intersect the curve at two distinct points β> 0
π=3
π = β4 β π
π=3
(β4 β π)2 β 4(3)(3) > 0
16 + 8π + π2 β 36 > 0
π2 + 8π β 20 > 0
-10
β΄ π2 + 8π β 20 = 0
π = β10
,
β΄ π β€ β10
π=2
P
...
112
π < β4
Ο
CHAPTER 2
8) π¦ = ππ₯ β 4 β (1)
π¦ = π₯ 2 β 2π₯
Quadratic functions
β (2)
from (2) into (1):
π₯ 2 β 2π₯ = ππ₯ β 4
π₯ 2 β 2π₯ β ππ₯ + 4 = 0
For the line to intersect the curve at two distinct points, β> 0
π=1
π = β2 β π
π=4
π 2 β 4ππ > 0
(β2 β π )2 β 4(1)(4) > 0
4 + 4π + π 2 β 16 > 0
π 2 + 4π β 12 > 0
-6
β΄ π 2 + 4π β 12 = 0
β΄ π < β6
π = β6
,
2
π>2
,
π=2
-------------------------------------------------------------------------------------------------------------------------
9) π(π₯) = π₯ 2 β 3π₯
i) π(π₯) > 4
π₯ 2 β 3π₯ > 4
π₯ 2 β 3π₯ β 4 > 0
-1
4
β΄ π₯ 2 β 3π₯ β 4 = 0
π₯ = β1
,
β΄ π₯ < β1
π₯=4
,
π₯>4
-------------------------------------------------------------------------------------------------------------------------
ii) π₯ 2 β 3π₯ β‘ (π₯ β π)2 β π β‘ π₯ 2 β 2ππ₯ + π2 β π
by equating coefficients:
β2π = β3
3
π=2
π2 β π = 0
9
4
βπ = 0
9
β΄π=4
P
...
114
Ο
CHAPTER 2
Quadratic functions
Method(2):
π¦ 2 = 4π₯ β (2)
π¦ = 2π₯ + π β (1)
ππππ (2): π¦ = β4π₯ = β4 π₯ βπ₯ = 2βπ₯
πππ‘π (1): 2βπ₯ = 2π₯ + π
β΄ 2π₯ β 2βπ₯ + π = 0
πππ‘ π = βπ₯
β΄ 2π2 β 2π + π = 0
For the line to be tangent to the curve β= 0
π=2
π = β2
π=π
4 β 4(2)(π) = 0
4 β 8π = 0
β
1
π=2
----------------------------------------------------------------------------------------