Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Ο
CHAPTER 2
Quadratic functions
Quadratic Functions
Quadratic functions are in the form of π(π) = πππ + ππ + π, where π β π and
represented by:
Vertex (minimum point)
axis of symmetry
Vertex (minimum point)
π<π
π>π
Roots of a quadratic function:
β The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53
βπΒ±βπ2 β4ππ
2π
Ο
CHAPTER 2
Types of roots of a quadratic function:
1) Two different (distinct) real roots:
2) Two equal real roots (one real roots):
3) No real roots:
P
...
Discriminant = π₯ = π 2 β 4ππ, we have three cases:
1) π₯ = π 2 β 4ππ > 0
"two distinct "("different")" real roots"
2) π₯ = π 2 β 4ππ = 0
"two equal real roots "("one root")
3) π₯ = π 2 β 4ππ < 0
"no real roots"
Examples:
1) State the nature of the roots for each of the following quadratics:
a) π(π₯) = π₯ 2 β 10π₯ + 25
β΅π=1
π = β10
π = 25
β΄ π₯ = π 2 β 4ππ = 100 β 100 = 0
It has one real root (two equal roots)
-------------------------------------------------------------------------------------------------------------------------
b) π(π₯) = βπ₯ 2 + 5π₯ + 6
β΅ π = β1
π=5
π=6
β΄ π₯ = π 2 β 4ππ = 25 + 24 = 49 > 0
It has two different roots (two distinct roots)
-------------------------------------------------------------------------------------------------------------------------
c) π(π₯) = β2π₯ 2 β 5π₯ β 6
β΅ π = β2
π = β5
π = β6
β΄ π₯ = π 2 β 4ππ = 25 β 48 = β23 < 0
It has no real roots
P
...
β΅π=3
π=2
π=π
β΅ π₯ = π 2 β 4ππ = 0
two equal roots
4
1
β΄ 4 β 4 Γ 3 Γ π = 0 β 4 β 12π = 0 β 12π = 4 β π = 12 = 3
-------------------------------------------------------------------------------------------------------------------------
3) The equation ππ₯ 2 β 2π₯ β 7 = 0 has two distinct real roots, find the possible value
of k
...
56
β4
28
β π>
β1
7
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Solve the equation 2π₯ 2 β 2π₯ β 1 = 0, giving the roots in exact form
------------------------------------------------------------------------------------------------------------------------
2) Solve the equation 3π₯ 2 β 4π₯ β 9 = 0, giving your answers to 2 d
...
-------------------------------------------------------------------------------------------------------------------------
3) State the nature of the roots for each of the following quadratics:
a) 2π₯ 2 β 3π₯ β 4 = 0
-------------------------------------------------------------------------------------------------------------------------
b) 2π₯ 2 β 3π₯ β 5 = 0
P
...
P
...
Example:
Find the coordinates of the vertex of the functionπ(π₯) = β2π₯ 2 β 3π₯ + 4; hence,
state the maximum or minimum value of f(x) and the value of x at which it occurs
...
59
3
4
41
8
Ο
CHAPTER 2
Quadratic functions
2) Put the function π(π₯) = ππ₯ 2 + ππ₯ + π in the form of the completing the square
π(π₯) = π΄(π₯ + π΅)2 + πΆ
...
The vertex is (-B, C)
...
Solution
β2π₯ 2 β 3π₯ + 4 β‘ π΄(π₯ + π΅)2 + πΆ β‘ π΄(π₯ 2 + 2π΅π₯ + π΅ 2 ) + πΆ β‘ π΄π₯ 2 + 2π΄π΅π₯ + π΄π΅ 2 + πΆ
π΄ = β2
β3
3
2π΄π΅ = β3 β 2(β2)π΅ = β3 β β4π΅ = β3 β π΅ = β4 = 4
3
π΄π΅ 2 + πΆ = 4 β β2(4)2 + πΆ = 4 β
3 2
β΄ π(π₯) = β2 (π₯ + 4) +
41
,
8
β18
16
9
+πΆ =4β πΆ =4+8 =
3 41
the vertex is (β 4 ,
8
41
8
)
-------------------------------------------------------------------------------------------------------------------------
2) The quadratic π₯ 2 β 10π₯ + 7 is denoted by f(x)
...
Hence, find the least possible value of f(x) and the corresponding value
of x
...
60
Ο
CHAPTER 2
Quadratic functions
3) The equation of a curve is π¦ = 8π₯ β π₯ 2
...
b) Find the coordinates of the vertex and state whether it is maximum or minimum
...
61
Ο
CHAPTER 2
Quadratic functions
5) If π(π₯) = 2π₯ 2 β 8π₯ + 10
i) Express π(π₯) is the form π(π₯ + π)2 + π, where a, b and c are constant
ii) hence, state the coordinates of the stationary point of π(π₯) and state its type
...
Solution
π₯ 2 + 4π₯ + 3 β‘ (π₯ + 2)2 β 4 + 3
π₯ 2 + 4π₯ + 3 β‘ (π₯ + 2)2 β 1,
π = 2 , π = β1
-----------------------------------------------------------------------------------------------------------------------
7) Put 2 + 2π₯ β π₯ 2 in the form β β (π₯ + π)2 stating the values of h and p
...
62
β = 3 πππ π = β1
Ο
CHAPTER 2
Quadratic functions
8) Express 2π₯ 2 β 16π₯ + 37 in the formπ΄(π₯ + π΅)2 +πΆ, stating the values of A, B
and C
...
Solution
β2π₯ 2 + 4π₯ = β2(π₯ 2 β 2π₯) = β2[(π₯ β 1)2 β 1]
= β2(π₯ β 1)2 + 2 = 2 β 2(π₯ β 1)2
π΄ = 2, π΅ = 2 πππ πΆ = 1
P
...
64
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Given that π₯ 2 β 4π₯ + 7 β‘ (π₯ β π)2 + π
...
-------------------------------------------------------------------------------------------------------------------------
2) Express each of the following in the form of (π₯ + π)2 + π; stating the value of a
and b
...
a) π₯ 2 + 2π₯ + 2
------------------------------------------------------------------------------------------------------------------------
b) π₯ 2 β 8π₯ β 3
P
...
66
Ο
CHAPTER 2
Quadratic functions
g) 7 β 8π₯ β 4π₯ 2
------------------------------------------------------------------------------------------------------------------------
h) βπ₯ 2 β 10π₯ + 7
------------------------------------------------------------------------------------------------------------------------
3) Find the least or the greatest value of each of the following quadratic and the value
of x for which this occurs
...
67
Ο
CHAPTER 2
Quadratic functions
b) π¦ = (π₯ + 2)2 β 7
------------------------------------------------------------------------------------------------------------------------
c) π¦ = 1 + (2π₯ β 3)2
------------------------------------------------------------------------------------------------------------------------
d) π¦ = (5π₯ + 3)2 + 2
------------------------------------------------------------------------------------------------------------------------
e) π¦ = 3 β 2(π₯ β 4)2
P
...
β Find the y-intercept (value of y when x = 0)
...
β Sketch the function
...
69
Ο
CHAPTER 2
Quadratic functions
b) π¦ = 7 β 10π₯ β π₯ 2
Solution
Roots β 7 β 10π₯ β π₯ 2 = 0 β π₯ 2 β 10π₯ + 7
by using the formula β π₯ = β10
...
657
π¦-intercept β π₯ = 0 β π¦ = 7 β (0 , 7)
Vertex β π₯ =
βπ
2π
ββ10
= 2Γβ1 = β5
,
π¦ = 7 β 10(β5) β (β5)2 = 32 β (β5 , 32)
P
...
71
Ο
CHAPTER 2
Quadratic functions
3) π(π₯) = 4π₯ β 2π₯ 2 + 3
------------------------------------------------------------------------------------------------------------------------
4) π(π₯) = π₯ 2 + 6π₯
P
...
β Solve the equation (find the roots)
...
β State the range of values of x satisfying the inequality
...
73
,
π₯=3
3
x
Ο
CHAPTER 2
Quadratic functions
c) π₯ 2 + 12 < 13π₯
Solution
1
12
π₯ 2 β 13π₯ + 12 < 0
π₯ 2 β 13π₯ + 12 = 0 β (π₯ β 1)(π₯ β 12) = 0 β π₯ = 1
,
x
π₯ = 12
β΄ 1 < π₯ < 12
------------------------------------------------------------------------------------------------------------------------
d) π₯ 2 > π₯
Solution
0
π₯2 β π₯ > 0
π₯ 2 β π₯ = 0 β π₯(π₯ β 1) = 0 β π₯ = 0
β΄π₯<0
and
,
x
1
π₯=1
π₯>1
------------------------------------------------------------------------------------------------------------------------
2) Find the range of values of k for which the equation ππ₯ 2 + ππ₯ + 2 = 0 has no real
roots
...
74
π=8
0
8
k
Ο
CHAPTER 2
Quadratic functions
3) Find the range of values of k for which the equation ππ₯ 2 + 3π₯ + π = 0 has two
distinct real roots
...
Solution
π=1
,
π=π
,
2
π = 2π β 3
6
π₯ = π 2 β 4ππ β₯ 0 β π 2 β 4(1)(2π β 3) β₯ 0 β π 2 β 8π + 12 β₯ 0
π 2 β 8π + 12 = 0 β (π β 2)(π β 6) = 0 β π = 2
β΄πβ€2
,
πβ₯6
P
...
76
Ο
CHAPTER 2
Quadratic functions
d) 4 β 9π₯ 2 β€ 0
------------------------------------------------------------------------------------------------------------------------
2) Find the set of values of k for which the equation π₯ 2 β 2ππ₯ + 4 = 0 has two real
roots
...
77
Ο
CHAPTER 2
Quadratic functions
Simultaneous Equations
How to solve a pair of simultaneous equations one of them quadratic and
the other linear:
Examples:
1) Solve simultaneously π₯ 2 + 2π¦ 2 = 9,
π₯ + 4π¦ = 9
Solution
From the line β π₯ = 9 β 4π¦
Into the curve β (9 β 4π¦)2 + 2π¦ 2 = 9 β 81 β 72π¦ + 16π¦ 2 + 2π¦ 2 = 9
18π¦ 2 β 72π¦ + 81 β 9 = 0 β 18π¦ 2 β 72π¦ + 72 = 0 β (Γ· 18)
π¦ 2 β 4π¦ + 4 = 0 β (π¦ β 2)(π¦ β 2) = 0 β π¦ = 2
π₯ = 9 β 4(2) = 1
β΄ The line cuts the curve at point (1 , 2)
β΄ The line is tangent to the curve and the point of tangency is (1 , 2)
------------------------------------------------------------------------------------------------------------------------
2) Find the point(s) of intersection of the line π₯ + π¦ = 1 and the curve
π₯ 2 β π₯π¦ + π¦ 2 = 7
Solution
From the line β π¦ = 1 β π₯
Into the curve β π₯ 2 β π₯(1 β π₯) + (1 β π₯)2 = 7 β π₯ 2 β π₯ + π₯ 2 + 1 β 2π₯ + π₯ 2 = 7
3π₯ 2 β 3π₯ + 1 β 7 = 0 β 3π₯ 2 β 3π₯ β 6 = 0 β (Γ· 3)
π₯ 2 β π₯ β 2 = 0 β (π₯ β 2)(π₯ + 1) = 0 β π₯ = 2
π¦ = 1 β 2 = β1
,
π¦ = 1 β β1 = 2
β΄ The line cuts the curve at points (2, -1) and (-1, 2)
β΄ The points of intersection are (2, -1) and (-1, 2)
P
...
1) π₯ > 0
The line cuts the curve at two different (distinct) points
...
3) π₯ < 0
The line neither cuts nor touches the curve
Examples:
1) State the relation between the line π₯ + π¦ = 1and the curve π¦ = π₯ 2 + 2π₯ β 3
Solution
From the line β π¦ = 1 β π₯
Into the curve β 1 β π₯ = π₯ 2 + 2π₯ β 3 β π₯ 2 + 3π₯ β 4 = 0
π=1
,
π=3
,
π = β4
π₯ = π 2 β 4ππ = 32 β 4(1)(β4) = 9 + 16 = 25 > 0
β΄ The line cuts the curve at two different points
...
79
Ο
CHAPTER 2
Quadratic functions
1
2) Prove that the line π¦ = π₯ β 1 is a tangent to the curve π¦ = 4 π₯ 2
...
------------------------------------------------------------------------------------------------------------------------
3) Find the range of the value of k for which the line π¦ β π₯ = 1 cuts the curve
π¦ = ππ₯ 2 at two distinct points
...
Solution
From the line β π¦ = π₯ + π
Into the curve β π₯ 2 + π₯(π₯ + π) + 2 = 0 β π₯ 2 + π₯ 2 + ππ₯ + 2 = 0 β 2π₯ 2 + ππ₯ + 2
=0
π=2
,
π=π
,
π=2
π₯ = 0 β π 2 β 4ππ = 0 β π 2 β 4(2)(2) = 0 β π 2 β 16 = 0 β π 2 = 16
π=4
,
π = β4
P
...
Solution
From the line β π¦ = 2π₯ + π
Into the curve β (2π₯ + π)2 = 4π₯ β 4π₯ 2 + 4ππ₯ + π 2 = 4π₯ β 4π₯ 2 + 4ππ₯ β 4π₯ + π 2 = 0
4π₯ 2 + (4π β 4)π₯ + π 2 = 0
π=4
,
π = 4π β 4
,
π = π2
π₯ = 0 β π 2 β 4ππ = 0 β (4π β 4)2 β 4(4)π 2 = 0 β 16π 2 β 32π + 16 β 16π 2 = 0
16
1
β32π + 16 = 0 β 32π = 16 β π = 32 β π = 2
P
...
Find the coordinates of the points of intersection
...
P
...
------------------------------------------------------------------------------------------------------------------------
5) Show that the line π¦ = 3π₯ β 3 and the curve π¦ = (3π₯ + 1)(π₯ + 2) do not meet
...
83
Ο
CHAPTER 2
Quadratic functions
Equations which could be reduced to quadratics:
Examples:
1) solve π₯ 4 β 4π₯ 2 + 3 = 0
Solution
Let β = π₯ 2 so
β2 = π₯ 4
β2 β 4β + 3 = 0 β (β β 3)(β β 1) = 0 β β = 3
β΄ π₯2 = 3
,
π₯2 = 1
β΄ π₯ = Β±β3
,
,
β=1
π₯ = Β±1
------------------------------------------------------------------------------------------------------------------------
2) Solve π₯ β 5βπ₯ = 6
Solution
Let β = βπ₯ so
β2 = π₯
β2 β 5β β 6 = 0 β (β β 3)(β β 2) = 0 β β = 3
β΄ βπ₯ = 3
,
βπ₯ = 2
β΄π₯=9
,
,
β=2
π₯=4
------------------------------------------------------------------------------------------------------------------------
3) Solve π₯ 6 β 3π₯ 3 + 2 = 0
Solution
Let β = π₯
3
so
2
β =π₯
6
β2 β 3β + 2 = 0 β (β β 2)(β β 1) = 0 β β = 2
β΄ π₯3 = 2
,
π₯3 = 1
3
β΄ π₯ = β2
,
,
β=1
π₯=1
-----------------------------------------------------------------------------------------------------------------------18
1
4) Find the real roots of the equation π₯ 4 + π₯ 2 = 4
Solution
Multiply the equation by π₯ 4
Let β = π₯ 2 so β2 = π₯ 4
18 + π₯ 2 = 4π₯ 4 β 4π₯ 4 β π₯ 2 β 18 = 0
9
, β = β2
4
π₯ 2 = β2 (rejected no square root for β π£π numbers)
4β2 β β β 18 = 0 β (4β β 9)(β + 2) = 0 β β =
β΄ π₯2 =
9
4
,
P
...
85
Ο
CHAPTER 2
Quadratic functions
Exercises
1) i) Express 2π₯ 2 + 8π₯ β 10 in the form π(x + b) 2 + π
...
P
...
Express π(π₯) in the
form π(x β b) 2 β π
...
-------------------------------------------------------------------------------------------------------------------------
4) Determine the set of values of k for which the line 2π¦ = π₯ + π does not intersect
the curve π¦ = π₯ 2 β 4π₯+7
...
87
Ο
CHAPTER 2
Quadratic functions
5) Find the set of values of m for which the line π¦ = ππ₯ + 4 intersects the curve
π¦ = 3π₯ 2 β 4π₯ + 7 at two distinct points
...
i) Express 8π₯ β π₯ 2 in the form π β(x + b) 2 , stating the numerical values of a and b
-------------------------------------------------------------------------------------------------------------------------
ii) Hence, or otherwise, find the coordinates of the stationary point of the curve
...
88
Ο
CHAPTER 2
Quadratic functions
iii) Find the set of values of x for which π¦ β₯ β20
...
-------------------------------------------------------------------------------------------------------------------------
8) Find the set of values of k for which the line π¦ = ππ₯ β 4 intersects the curve
π¦ = π₯ 2 β 2π₯ at two distinct points
...
89
Ο
CHAPTER 2
Quadratic functions
9) The function f is defined by π βΆ π₯ β π₯ 2 β 3π₯ for π₯ β π
...
----------------------------------------