Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: quadratic functions
Description: quadratic functions all structure

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Ο€

CHAPTER 2

Quadratic functions

Quadratic Functions
Quadratic functions are in the form of 𝒇(𝒙) = π’‚π’™πŸ + 𝒃𝒙 + 𝒄, where 𝒂 β‰  𝟎 and
represented by:

Vertex (minimum point)
axis of symmetry

Vertex (minimum point)
𝒂<𝟎

𝒂>𝟎

Roots of a quadratic function:
β†’ The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘
2π‘Ž

Ο€

CHAPTER 2

Types of roots of a quadratic function:
1) Two different (distinct) real roots:

2) Two equal real roots (one real roots):

3) No real roots:

P
...

Discriminant = π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘, we have three cases:
1) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ > 0

"two distinct "("different")" real roots"

2) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 0

"two equal real roots "("one root")

3) π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ < 0

"no real roots"

Examples:
1) State the nature of the roots for each of the following quadratics:
a) 𝑓(π‘₯) = π‘₯ 2 βˆ’ 10π‘₯ + 25
βˆ΅π‘Ž=1

𝑏 = βˆ’10

𝑐 = 25

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 100 βˆ’ 100 = 0

It has one real root (two equal roots)

-------------------------------------------------------------------------------------------------------------------------

b) 𝑓(π‘₯) = βˆ’π‘₯ 2 + 5π‘₯ + 6
∡ π‘Ž = βˆ’1

𝑏=5

𝑐=6

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 25 + 24 = 49 > 0

It has two different roots (two distinct roots)

-------------------------------------------------------------------------------------------------------------------------

c) 𝑓(π‘₯) = βˆ’2π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 6
∡ π‘Ž = βˆ’2

𝑏 = βˆ’5

𝑐 = βˆ’6

∴ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 25 βˆ’ 48 = βˆ’23 < 0

It has no real roots

P
...

βˆ΅π‘Ž=3

𝑏=2

𝑐=π‘˜

∡ π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 0

two equal roots
4

1

∴ 4 βˆ’ 4 Γ— 3 Γ— π‘˜ = 0 β†’ 4 βˆ’ 12π‘˜ = 0 β†’ 12π‘˜ = 4 β†’ π‘˜ = 12 = 3
-------------------------------------------------------------------------------------------------------------------------

3) The equation π‘˜π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 7 = 0 has two distinct real roots, find the possible value
of k
...
56

βˆ’4
28

β†’ π‘˜>

βˆ’1
7

Ο€

CHAPTER 2

Quadratic functions

 Test yourself:
1) Solve the equation 2π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 1 = 0, giving the roots in exact form

------------------------------------------------------------------------------------------------------------------------

2) Solve the equation 3π‘₯ 2 βˆ’ 4π‘₯ βˆ’ 9 = 0, giving your answers to 2 d
...


-------------------------------------------------------------------------------------------------------------------------

3) State the nature of the roots for each of the following quadratics:
a) 2π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 4 = 0

-------------------------------------------------------------------------------------------------------------------------

b) 2π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 5 = 0

P
...


P
...


Example:
Find the coordinates of the vertex of the function𝑓(π‘₯) = βˆ’2π‘₯ 2 βˆ’ 3π‘₯ + 4; hence,
state the maximum or minimum value of f(x) and the value of x at which it occurs
...
59

3
4

41
8

Ο€

CHAPTER 2

Quadratic functions

2) Put the function 𝑓(π‘₯) = π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐 in the form of the completing the square
𝑓(π‘₯) = 𝐴(π‘₯ + 𝐡)2 + 𝐢
...
The vertex is (-B, C)
...


Solution
βˆ’2π‘₯ 2 βˆ’ 3π‘₯ + 4 ≑ 𝐴(π‘₯ + 𝐡)2 + 𝐢 ≑ 𝐴(π‘₯ 2 + 2𝐡π‘₯ + 𝐡 2 ) + 𝐢 ≑ 𝐴π‘₯ 2 + 2𝐴𝐡π‘₯ + 𝐴𝐡 2 + 𝐢

𝐴 = βˆ’2
βˆ’3

3

2𝐴𝐡 = βˆ’3 β‡’ 2(βˆ’2)𝐡 = βˆ’3 β‡’ βˆ’4𝐡 = βˆ’3 β‡’ 𝐡 = βˆ’4 = 4
3

𝐴𝐡 2 + 𝐢 = 4 β‡’ βˆ’2(4)2 + 𝐢 = 4 β‡’
3 2

∴ 𝑓(π‘₯) = βˆ’2 (π‘₯ + 4) +

41

,

8

βˆ’18
16

9

+𝐢 =4β‡’ 𝐢 =4+8 =
3 41

the vertex is (βˆ’ 4 ,

8

41
8

)

-------------------------------------------------------------------------------------------------------------------------

2) The quadratic π‘₯ 2 βˆ’ 10π‘₯ + 7 is denoted by f(x)
...
Hence, find the least possible value of f(x) and the corresponding value
of x
...
60

Ο€

CHAPTER 2

Quadratic functions

3) The equation of a curve is 𝑦 = 8π‘₯ βˆ’ π‘₯ 2
...

b) Find the coordinates of the vertex and state whether it is maximum or minimum
...
61

Ο€

CHAPTER 2

Quadratic functions

5) If 𝑓(π‘₯) = 2π‘₯ 2 βˆ’ 8π‘₯ + 10
i) Express 𝑓(π‘₯) is the form π‘Ž(π‘₯ + 𝑏)2 + 𝑐, where a, b and c are constant
ii) hence, state the coordinates of the stationary point of 𝑓(π‘₯) and state its type
...


Solution
π‘₯ 2 + 4π‘₯ + 3 ≑ (π‘₯ + 2)2 βˆ’ 4 + 3
π‘₯ 2 + 4π‘₯ + 3 ≑ (π‘₯ + 2)2 βˆ’ 1,

π‘Ž = 2 , 𝑏 = βˆ’1

-----------------------------------------------------------------------------------------------------------------------

7) Put 2 + 2π‘₯ βˆ’ π‘₯ 2 in the form β„Ž βˆ’ (π‘₯ + 𝑝)2 stating the values of h and p
...
62

β„Ž = 3 π‘Žπ‘›π‘‘ 𝑝 = βˆ’1

Ο€

CHAPTER 2

Quadratic functions

8) Express 2π‘₯ 2 βˆ’ 16π‘₯ + 37 in the form𝐴(π‘₯ + 𝐡)2 +𝐢, stating the values of A, B
and C
...


Solution
βˆ’2π‘₯ 2 + 4π‘₯ = βˆ’2(π‘₯ 2 βˆ’ 2π‘₯) = βˆ’2[(π‘₯ βˆ’ 1)2 βˆ’ 1]
= βˆ’2(π‘₯ βˆ’ 1)2 + 2 = 2 βˆ’ 2(π‘₯ βˆ’ 1)2

𝐴 = 2, 𝐡 = 2 π‘Žπ‘›π‘‘ 𝐢 = 1
P
...
64

Ο€

CHAPTER 2

Quadratic functions

 Test yourself:
1) Given that π‘₯ 2 βˆ’ 4π‘₯ + 7 ≑ (π‘₯ βˆ’ π‘Ž)2 + 𝑏
...


-------------------------------------------------------------------------------------------------------------------------

2) Express each of the following in the form of (π‘₯ + π‘Ž)2 + 𝑏; stating the value of a
and b
...

a) π‘₯ 2 + 2π‘₯ + 2

------------------------------------------------------------------------------------------------------------------------

b) π‘₯ 2 βˆ’ 8π‘₯ βˆ’ 3

P
...
66

Ο€

CHAPTER 2

Quadratic functions

g) 7 βˆ’ 8π‘₯ βˆ’ 4π‘₯ 2

------------------------------------------------------------------------------------------------------------------------

h) βˆ’π‘₯ 2 βˆ’ 10π‘₯ + 7

------------------------------------------------------------------------------------------------------------------------

3) Find the least or the greatest value of each of the following quadratic and the value
of x for which this occurs
...
67

Ο€

CHAPTER 2

Quadratic functions

b) 𝑦 = (π‘₯ + 2)2 βˆ’ 7

------------------------------------------------------------------------------------------------------------------------

c) 𝑦 = 1 + (2π‘₯ βˆ’ 3)2

------------------------------------------------------------------------------------------------------------------------

d) 𝑦 = (5π‘₯ + 3)2 + 2

------------------------------------------------------------------------------------------------------------------------

e) 𝑦 = 3 βˆ’ 2(π‘₯ βˆ’ 4)2

P
...

β†’ Find the y-intercept (value of y when x = 0)
...

β†’ Sketch the function
...
69

Ο€

CHAPTER 2

Quadratic functions

b) 𝑦 = 7 βˆ’ 10π‘₯ βˆ’ π‘₯ 2

Solution
Roots β‡’ 7 βˆ’ 10π‘₯ βˆ’ π‘₯ 2 = 0 β‡’ π‘₯ 2 βˆ’ 10π‘₯ + 7
by using the formula β‡’ π‘₯ = βˆ’10
...
657
𝑦-intercept β‡’ π‘₯ = 0 β‡’ 𝑦 = 7 β‡’ (0 , 7)
Vertex β‡’ π‘₯ =

βˆ’π‘
2π‘Ž

βˆ’βˆ’10

= 2Γ—βˆ’1 = βˆ’5

,

𝑦 = 7 βˆ’ 10(βˆ’5) βˆ’ (βˆ’5)2 = 32 β‡’ (βˆ’5 , 32)

P
...
71

Ο€

CHAPTER 2

Quadratic functions

3) 𝑓(π‘₯) = 4π‘₯ βˆ’ 2π‘₯ 2 + 3

------------------------------------------------------------------------------------------------------------------------

4) 𝑓(π‘₯) = π‘₯ 2 + 6π‘₯

P
...

β†’ Solve the equation (find the roots)
...

β†’ State the range of values of x satisfying the inequality
...
73

,

π‘₯=3

3

x

Ο€

CHAPTER 2

Quadratic functions

c) π‘₯ 2 + 12 < 13π‘₯

Solution
1

12

π‘₯ 2 βˆ’ 13π‘₯ + 12 < 0
π‘₯ 2 βˆ’ 13π‘₯ + 12 = 0 β‡’ (π‘₯ βˆ’ 1)(π‘₯ βˆ’ 12) = 0 β‡’ π‘₯ = 1

,

x

π‘₯ = 12

∴ 1 < π‘₯ < 12
------------------------------------------------------------------------------------------------------------------------

d) π‘₯ 2 > π‘₯

Solution
0

π‘₯2 βˆ’ π‘₯ > 0
π‘₯ 2 βˆ’ π‘₯ = 0 β‡’ π‘₯(π‘₯ βˆ’ 1) = 0 β‡’ π‘₯ = 0
∴π‘₯<0

and

,

x

1

π‘₯=1

π‘₯>1

------------------------------------------------------------------------------------------------------------------------

2) Find the range of values of k for which the equation π‘˜π‘₯ 2 + π‘˜π‘₯ + 2 = 0 has no real
roots
...
74

π‘˜=8

0

8

k

Ο€

CHAPTER 2

Quadratic functions

3) Find the range of values of k for which the equation π‘˜π‘₯ 2 + 3π‘₯ + π‘˜ = 0 has two
distinct real roots
...


Solution
π‘Ž=1

,

𝑏=π‘˜

,

2

𝑐 = 2π‘˜ βˆ’ 3

6

π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ β‰₯ 0 β‡’ π‘˜ 2 βˆ’ 4(1)(2π‘˜ βˆ’ 3) β‰₯ 0 β‡’ π‘˜ 2 βˆ’ 8π‘˜ + 12 β‰₯ 0
π‘˜ 2 βˆ’ 8π‘˜ + 12 = 0 β‡’ (π‘˜ βˆ’ 2)(π‘˜ βˆ’ 6) = 0 β‡’ π‘˜ = 2
βˆ΄π‘˜β‰€2

,

π‘˜β‰₯6

P
...
76

Ο€

CHAPTER 2

Quadratic functions

d) 4 βˆ’ 9π‘₯ 2 ≀ 0

------------------------------------------------------------------------------------------------------------------------

2) Find the set of values of k for which the equation π‘₯ 2 βˆ’ 2π‘˜π‘₯ + 4 = 0 has two real
roots
...
77

Ο€

CHAPTER 2

Quadratic functions

Simultaneous Equations
How to solve a pair of simultaneous equations one of them quadratic and
the other linear:
Examples:
1) Solve simultaneously π‘₯ 2 + 2𝑦 2 = 9,

π‘₯ + 4𝑦 = 9

Solution
From the line β‡’ π‘₯ = 9 βˆ’ 4𝑦
Into the curve β‡’ (9 βˆ’ 4𝑦)2 + 2𝑦 2 = 9 β‡’ 81 βˆ’ 72𝑦 + 16𝑦 2 + 2𝑦 2 = 9
18𝑦 2 βˆ’ 72𝑦 + 81 βˆ’ 9 = 0 β‡’ 18𝑦 2 βˆ’ 72𝑦 + 72 = 0 β†’ (Γ· 18)
𝑦 2 βˆ’ 4𝑦 + 4 = 0 β‡’ (𝑦 βˆ’ 2)(𝑦 βˆ’ 2) = 0 β‡’ 𝑦 = 2
π‘₯ = 9 βˆ’ 4(2) = 1
∴ The line cuts the curve at point (1 , 2)
∴ The line is tangent to the curve and the point of tangency is (1 , 2)
------------------------------------------------------------------------------------------------------------------------

2) Find the point(s) of intersection of the line π‘₯ + 𝑦 = 1 and the curve
π‘₯ 2 βˆ’ π‘₯𝑦 + 𝑦 2 = 7

Solution
From the line β‡’ 𝑦 = 1 βˆ’ π‘₯
Into the curve β‡’ π‘₯ 2 βˆ’ π‘₯(1 βˆ’ π‘₯) + (1 βˆ’ π‘₯)2 = 7 β‡’ π‘₯ 2 βˆ’ π‘₯ + π‘₯ 2 + 1 βˆ’ 2π‘₯ + π‘₯ 2 = 7
3π‘₯ 2 βˆ’ 3π‘₯ + 1 βˆ’ 7 = 0 β‡’ 3π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 6 = 0 β†’ (Γ· 3)
π‘₯ 2 βˆ’ π‘₯ βˆ’ 2 = 0 β‡’ (π‘₯ βˆ’ 2)(π‘₯ + 1) = 0 β‡’ π‘₯ = 2
𝑦 = 1 βˆ’ 2 = βˆ’1

,

𝑦 = 1 βˆ’ βˆ’1 = 2

∴ The line cuts the curve at points (2, -1) and (-1, 2)
∴ The points of intersection are (2, -1) and (-1, 2)

P
...

1) π›₯ > 0

The line cuts the curve at two different (distinct) points
...


3) π›₯ < 0

The line neither cuts nor touches the curve

Examples:
1) State the relation between the line π‘₯ + 𝑦 = 1and the curve 𝑦 = π‘₯ 2 + 2π‘₯ βˆ’ 3

Solution
From the line β‡’ 𝑦 = 1 βˆ’ π‘₯
Into the curve β‡’ 1 βˆ’ π‘₯ = π‘₯ 2 + 2π‘₯ βˆ’ 3 β‡’ π‘₯ 2 + 3π‘₯ βˆ’ 4 = 0
π‘Ž=1

,

𝑏=3

,

𝑐 = βˆ’4

π›₯ = 𝑏 2 βˆ’ 4π‘Žπ‘ = 32 βˆ’ 4(1)(βˆ’4) = 9 + 16 = 25 > 0
∴ The line cuts the curve at two different points
...
79

Ο€

CHAPTER 2

Quadratic functions
1

2) Prove that the line 𝑦 = π‘₯ βˆ’ 1 is a tangent to the curve 𝑦 = 4 π‘₯ 2
...
111

2

,

π‘š>2

Ο€

CHAPTER 2

Quadratic functions

6) i) 8π‘₯ βˆ’ π‘₯ 2 ≑ π‘Ž βˆ’ (π‘₯ + 𝑏)2
≑ π‘Ž βˆ’ (π‘₯ 2 + 2𝑏π‘₯ + 𝑏 2 )
≑ π‘Ž βˆ’ π‘₯ 2 βˆ’ 2𝑏π‘₯ βˆ’ 𝑏 2
by equating coefficients:
π‘Ž βˆ’ 𝑏2 = 0

βˆ’2𝑏 = 8

π‘Ž βˆ’ (βˆ’4)2 = 0

𝑏 = βˆ’4

π‘Ž βˆ’ 16 = 0

∴ π‘Ž = 16

∴ 8π‘₯ βˆ’ π‘₯ 2 ≑ 16 βˆ’ (π‘₯ βˆ’ 4)2
-------------------------------------------------------------------------------------------------------------------------

ii) Stationary point of the curve (vertex) is (4, 16)
-------------------------------------------------------------------------------------------------------------------------

iii) 𝑦 β‰₯ βˆ’20
8π‘₯ βˆ’ π‘₯ 2 β‰₯ βˆ’20
∴ π‘₯ 2 βˆ’ 8π‘₯ βˆ’ 20 ≀ 0
∴ π‘₯ 2 βˆ’ 8π‘₯ βˆ’ 20 = 0
π‘₯ = βˆ’2

,

-2

π‘₯ = 10

10

∴ βˆ’2 ≀ π‘₯ ≀ 10

-------------------------------------------------------------------------------------------------------------------------

7) 𝑦 = 4π‘₯ + π‘˜ β†’ (1)

𝑦 = π‘₯ 2 β†’ (2)

from (2) into (1):
π‘₯ 2 = 4π‘₯ + π‘˜
π‘₯ 2 βˆ’ 4π‘₯ βˆ’ π‘˜ = 0
For the line not to intersect the curve βˆ†< 0
π‘Ž=1

𝑏 = βˆ’4
𝑐 = βˆ’π‘˜
𝑏 βˆ’ 4π‘Žπ‘ < 0
16 βˆ’ 4(1)(βˆ’π‘˜) < 0
16 + 4π‘˜ < 0 β†’ 4π‘˜ < βˆ’16
2

P
...
113

3 2

9

𝑓(π‘₯) = (π‘₯ βˆ’ 2) βˆ’ 4

Ο€

CHAPTER 2

10) 𝑦 = π‘₯ 2 βˆ’ 4π‘₯ + 7 β†’ (1)

Quadratic functions

𝑦 + 3π‘₯ = 9 β†’ (2)

from (1) into (2):
π‘₯ 2 βˆ’ 4π‘₯ + 7 + 3π‘₯ = 9
π‘₯2 βˆ’ π‘₯ βˆ’ 2 = 0
π‘₯ = βˆ’1

,

π‘₯=2

𝑦 = 12

,

𝑦=3

∴Points of intersection of the line and the curve are (-1, 12) and (2, 3)
βˆ’1+2

∴ Mid point M = (

2

,

12+3

1

1

2

2

2

) = ( ,7 )

-------------------------------------------------------------------------------------------------------------------------

11) Method (1):
𝑦 = 2π‘₯ + 𝑐 β†’ (1)

𝑦 2 = 4π‘₯ β†’ (2)

from (1) into (2):
(2π‘₯ + 𝑐)2 = 4π‘₯
4π‘₯ 2 + 4𝑐π‘₯ + 𝑐 2 = 4π‘₯
4π‘₯ 2 + 4𝑐π‘₯ βˆ’ 4π‘₯ + 𝑐 2 = 0
For the line to be a tangent to the curve βˆ†= 0
π‘Ž=4

,

𝑏 = 4𝑐 βˆ’ 4 ,
𝑐 = 𝑐2
𝑏 2 βˆ’ 4π‘Žπ‘ = 0

(4𝑐 βˆ’ 4)2 βˆ’ 4(4)(𝑐 2 ) = 0
16𝑐 2 βˆ’ 32𝑐 + 16 βˆ’ 16𝑐 2 = 0
∴ βˆ’32𝑐 = βˆ’16

β†’

1

𝑐=2

P
...
115

Ο€

CHAPTER 2

ii) 𝑦 2 + 2π‘₯ = 13 β†’ (1)
π‘“π‘Ÿπ‘œπ‘š (2):

Quadratic functions

2𝑦 + π‘₯ = π‘˜ β†’ (2)

π‘₯ = π‘˜ βˆ’ 2𝑦
𝑦 2 + 2(π‘˜ βˆ’ 2𝑦) = 13

π‘–π‘›π‘‘π‘œ(1):

𝑦 2 + 2π‘˜ βˆ’ 4𝑦 βˆ’ 13 = 0
∴ 𝑦 2 βˆ’ 4𝑦 + 2π‘˜ βˆ’ 13 = 0
For the line to be a tangent to the curve βˆ†= 0
π‘Ž=1

𝑏 = βˆ’4

𝑐 = 2π‘˜ βˆ’ 13

∴ 𝑏 2 βˆ’ 4π‘Žπ‘ = 0
16 βˆ’ 4(1)(2π‘˜ βˆ’ 13) = 0
16 βˆ’ 8π‘˜ + 52 = 0
68 = 8π‘˜ β†’ π‘˜ =

68
8

= 8
...
116

Ο€

CHAPTER 2

Quadratic functions

14) i) Method (1):
π‘₯ = βˆ’3 & π‘₯ = 5 are roots of the equation, the equation could be written in the form
(π‘₯ + 3)(π‘₯ βˆ’ 5) = 0
π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 15 = 0 ↔ π‘₯ 2 + 𝑝π‘₯ + π‘ž = 0
∴ 𝑝 = βˆ’2

,

π‘ž = βˆ’15

Method (2): (Longer Method)
π‘₯ 2 + 𝑝π‘₯ + π‘ž = 0
At 𝒙 = βˆ’πŸ‘ (βˆ’3)2 + 𝑝(βˆ’3) + π‘ž = 0

π‘ž βˆ’ 3𝑝 + π‘ž = 0

∴ βˆ’3𝑝 + π‘ž = βˆ’π‘ž

β†’ (1)

(5)2 + 𝑝(5) + π‘ž = 0

At 𝒙 = πŸ“

25 + 5𝑝 + π‘ž = 0

5𝑝 + π‘ž = βˆ’25

β†’ (2)

Now solve (1) & (2)simultaneously:
βˆ’3𝑝 + π‘ž = βˆ’π‘ž
βˆ’5𝑝 βˆ’ π‘ž = 25
βˆ’8𝑝 = 16

𝑝 = βˆ’2

,

π‘ž = βˆ’15

-------------------------------------------------------------------------------------------------------------------------

ii) π‘₯ 2 + 𝑝π‘₯ + π‘ž + π‘Ÿ = 0
π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 15 + π‘Ÿ = 0
π‘Ž=1

𝑏 = βˆ’2

𝑐 = π‘Ÿ βˆ’ 15

For the equation to have equal roots βˆ†= 0
𝑏 2 βˆ’ 4π‘Žπ‘ = 0
(βˆ’2)2 βˆ’ 4(1)(π‘Ÿ βˆ’ 15) = 0
4 βˆ’ 4π‘Ÿ + 60 = 0
64 = 4π‘Ÿ

β†’

π‘Ÿ = 16
P
...
75 𝑒𝑛𝑖𝑑𝑠
4
-------------------------------------------------------------------------------------------------------------------------

16) 𝑦 = π‘˜π‘₯ 2 + 1 β†’ (1) ,

𝑦 = π‘˜π‘₯ β†’ (2)

From (1) into (2):
π‘˜π‘₯ 2 + 1 = π‘˜π‘₯
π‘˜π‘₯ 2 βˆ’ π‘˜π‘₯ + 1 = 0
For the curve and the line to have no common points
...
118

4

Ο€

CHAPTER 2

Quadratic functions

17) i) When π’Œ = 𝟏𝟏
π‘₯𝑦 = 12 β†’ (1) ,

2π‘₯ + 𝑦 = 11 β†’ (2)

From (2): 𝑦 = 11 βˆ’ 2π‘₯
Into (1): π‘₯(11 βˆ’ 2π‘₯) = 12
11π‘₯ βˆ’ 2π‘₯ 2 = 12
∴ 2π‘₯ 2 βˆ’ 11π‘₯ + 12 = 0
3

π‘₯=2

,

𝑦=8

π‘₯=4
𝑦=3
3

∴Coordinates o
Title: quadratic functions
Description: quadratic functions all structure